• Title/Summary/Keyword: Dynamic Bayesian networks

Search Result 38, Processing Time 0.023 seconds

An Analysis on Incident Cases of Dynamic Positioning Vessels (Dynamic Positioning 선박들의 사고사례 분석)

  • Chae, Chong-Ju;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2015
  • The Dynamic Positioning System consists of 7 elements which are namely Power system, Human machine interface, DP Computer, Position Reference System(PRS), Sensors, Thruster system and DP Operator. Incidents like loss of position(LOP) on DP vessel usually occur due to errors in these 7 elements. The purpose of this study is to find out safety operation method of DP vessel through qualitative and quantitative analyze of DP LOP incidents which are submitted to IMCA every year. The 612 DP LOP incidents submitted from 2001 to 2010 were analyzed to find out the main cause of the incidents and its rate among other causes. Consequently, the highest rate of incidents involving DP elements are PRS errors. DP computer, Power system, Human error and thruster system came next. The PRS has been analyzed and a flowchart was drawn through expert brainstorming. Also, the conditional probability has been analyzed through Bayesian Networks based on this flowchart. Consequentially, the main causes of drive off incidents were DGPS, microwave radar and HPR. Also, this study identified the main causes of DGPS errors through Bayesian Networks. These causes are signal blocked, electric components failure, relative mode error, signal weak or fail.

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.817-822
    • /
    • 2005
  • Recently tile study that exploits visual information for tile services of robot in indoor environments is active. Conventional image processing approaches are based on the pre-defined geometric models, so their performances are likely to decrease when they are applied to the uncertain and dynamic environments. For this, diverse researches to manage the uncertainty based on the knowledge for improving image recognition performance have been doing. In this paper we propose a Bayesian network modeling method for predicting the existence of target objects when they are occluded by other ones for improving the object detection performance of the service robots. The proposed method makes object relationship, so that it allows to predict the target object through observed ones. For this, we define the design method for small size Bayesian networks (primitive Bayesian netqork), and allow to integrate them following to the situations. The experiments are performed for verifying the performance of constructed model, and they shows $82.8\%$ of accuracy in 5 places.

Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers (변분 베이지안 혼합 인자 분석에 의한 분포 추정을 이용하는 진화 알고리즘)

  • Cho Dong-Yeon;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1071-1083
    • /
    • 2005
  • By estimating probability distributions of the good solutions in the current population, some researchers try to find the optimal solution more efficiently. Particularly, finite mixtures of distributions have a very useful role in dealing with complex problems. However, it is difficult to choose the number of components in the mixture models and merge superior partial solutions represented by each component. In this paper, we propose a new continuous evolutionary optimization algorithm with distribution estimation by variational Bayesian mixtures of factor analyzers. This technique can estimate the number of mixtures automatically and combine good sub-solutions by sampling new individuals with the latent variables. In a comparison with two probabilistic model-based evolutionary algorithms, the proposed scheme achieves superior performance on the traditional benchmark function optimization. We also successfully estimate the parameters of S-system for the dynamic modeling of biochemical networks.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

A Context-aware Messenger for Sharing User Contextual Information (사용자 컨텍스트 공유를 위한 상황인지 메신저)

  • Hong, Jin-Hyuk;Yang, Sung-Ihk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.906-910
    • /
    • 2008
  • As the mobile environment becomes widely used, there is a growth on the concern about recognizing and sharing user context. Sharing context makes the interaction between human more plentiful as well as helps to keep a good social relationship. Recently, it has been applied to some messengers or mobile applications with sharing simple contexts, but it is still required to recognize and share more complex and diverse contexts. In this paper, we propose a context-aware messenger that collects various sensory information, recognizes representative user contexts such as emotion, stress, and activity by using dynamic Bayesian networks, and visualizes them. It includes a modular model that is effective to recognize various contexts and displays them in the form of icons. We have verified the proposed method with the scenario evaluation and usability test.

Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling (신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.930-938
    • /
    • 2007
  • Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.