• Title/Summary/Keyword: Dynamic Addressing

Search Result 82, Processing Time 0.022 seconds

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

Dynamic Modeling of Building Services Projects: A Simulation Model for Real-Life Hospital Project

  • Abhishek, V.;Jagadeesh, P.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • All infrastructure projects are said to be inter-dependent, uncertain and labour-intensive in nature. There is no exception for building services sub sector. For a real time project such as 'The construction, extension and refurbishment of Employees' State Insurance Corporation (ESIC) Hospital at Tirupathy, India with total area of 45,000 square feet at an estimated cost of 1100 million rupees, a generic process model is developed to simulate the effect of set of identified variables on construction project. The 'Stocks and Flows' of dynamic model affords relevant insights to project managers, who apply this knowledge when designing better performance through more appropriate project planning. It is concluded from the model-based approach that building services works can be improved through specific better focussed managerial efforts, such as an increasing coordination effectiveness at the planning stage, clarifying prerequisite conditions prior to installations. Otherwise, pending works arising from work clashes can lead to knock-on effects resulting in productivity constraints and pressures, as well as more rework and demolition. Current study reveals that the model enables deep insight into various interdependent processes, their by improving construction performance levels, by addressing the dynamics of design errors and defective works, and recovering delayed schedule.

A new approach for 3-D pushover based analysis of asymmetric buildings: development and initial evaluation

  • Baros, Dimitrios K.;Anagnostopoulos, Stavros A.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.543-557
    • /
    • 2017
  • Results of an extensive study aiming to properly extend the well known pushover analysis into 3-D problems of asymmetric buildings are presented in this paper. The proposed procedure uses simple, 3 DOF, one-story models with shear-beam type elements in order to quantify the effects of inelastic torsional response of such buildings. Correction coefficients for the response quantities at the "stiff" and "flexible" sides are calculated using results from non-linear time history analyses of the simple models. Their values are then applied to the results of a simple, plane pushover analysis of the detailed building models. Results from the application of the new method for a set of three, conventionally designed, five-story buildings with high values of uniaxial eccentricities are compared with those obtained from multiple non-linear dynamic time history analyses, as well as from similar pushover methods addressing the same problem. This initial evaluation indicates that the proposed procedure is a clear improvement over the simple (conventional) pushover method and, in most cases, more accurate and reliable than the other methods considered. The accuracy, however, of all these methods is reduced substantially when they are applied to torsionally flexible buildings. Thus, for such challenging problems, use of inelastic dynamic analyses for a set of two component earthquake motions appears to be the preferable solution.

The Analysis of the Correlation between the Sustain-Electrode Gap of an AC-PDP and Address Discharge Characteristics (AC-PDP의 유지방전 전극사이의 간격과 어드레스 방전 특성과의 상관성 분석)

  • Lee, Young-Jun;Choi, Su-Sam;Park, Se-Kwang;Kim, Yong-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.239-244
    • /
    • 2006
  • To drive the high-image quality plasma displays of XGA and/or full-HD, we must effectively improve the driving waveform, which get the reset period for the stabilized control of wall charges, the address period to select discharge or non-discharge, and sustain period for luminance in 1 TV-frame, and also the display quality. To accomplish them, the development of the technology for the fast address discharge is required. In this paper, the correlation between the sustain-electrode gap and address discharge characteristics for the high-speed addressing was analyzed using the measurements of dynamic voltage margins. Results showed that the narrower the gap between the sustain electrodes, the narrower the with of the scan pulse became and a dynamic margin of data voltage of 29.2 V was obtained at scan pulse width of $1.0{\mu}s\;and\;V_{ramp}$ of 240 V for driving 4-inch test penal, which the gap between sustain electrodes was $65{\mu}m$.

DYNAMIC CHARACTERISTICS OF ANCIENT MASONRY CASTLE WALLS

  • SungMinLee;SooGonLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.71-77
    • /
    • 2003
  • Generally the dynamic characteristics of stone wall structures depend on several factors such as contact, the type of interlocking bonding stones, and the filling materials. This paper describes a non-destructive technique for diagnosis of historic masonry stone structures using the measurement of natural frequency technique. For this purpose, the castle wall of Nag-An Folk Town located in Sunchon, Korea was selected as a model. The Nag-An Town Castle is one of the well maintained historical remains constructed in the Chosun Kingdom of Korea. The construction started in 1397 A.D and was finished in 1626 A.D. The non-mortar castle wall is 1470m long and the average height is 4m with a width of 3 4m. The exterior of the wall is bonded with 1 2 m rectangular rough-faced stone and the inside of the wall is filled with gravel. The traditional village still remains inside the Nag-An Town Castle, and they have a regional food festival every October. Transverse vibrations were measured at 8 points around the castle. The measured natural frequency of the first mode was 26Hz 41Hz, and the shear modulus of filling material was 2.142 x $10^3$ ~ 8.915 x $10^3$kgf/$cm^2$ . With these results, it may be assumed that the filling material is gravel or a sand-gravel mixture. It is expected that the information provided by this paper will be useful for addressing the maintenance problems of the old castle walls.

  • PDF

Dynamic Data Distribution for Multi-dimensional Range Queries in Data-Centric Sensor Networks (데이타 기반 센서 네트워크에서 다차원 영역 질의를 위한 동적 데이타 분산)

  • Lim, Yong-Hun;Chung, Yon-Dohn;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In data-centric networks, various data items, such as temperature, humidity, etc. are sensed and stored in sensor nodes. As these attributes are mostly scalar values and inter-related, multi-dimensional range queries are useful. To process multi-dimensional range queries efficiently in data-centric storage, data addressing is essential. The Previous work focused on efficient query processing without considering overall network lifetime. To prolong network lifetime and support multi-dimensional range queries, we propose a dynamic data distribution method for multi-dimensional data, where data space is divided into equal-sized regions and linearized by using Hilbert space filling curve.

Sharing and Privacy in PHRs: Efficient Policy Hiding and Update Attribute-based Encryption

  • Liu, Zhenhua;Ji, Jiaqi;Yin, Fangfang;Wang, Baocang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.323-342
    • /
    • 2021
  • Personal health records (PHRs) is an electronic medical system that enables patients to acquire, manage and share their health data. Nevertheless, data confidentiality and user privacy in PHRs have not been handled completely. As a fine-grained access control over health data, ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data confidentiality. However, existing CP-ABE solutions for PHRs are facing some new challenges in access control, such as policy privacy disclosure and dynamic policy update. In terms of addressing these problems, we propose a privacy protection and dynamic share system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible access control. In the system, attribute information of access policy is fully hidden by attribute bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively secure under standard model. Finally, the performance comparisons and simulation results demonstrate that PPADS is suitable for PHRs.

Future Challenges and Perspectives of Digital Dance Interventions for Depression in Older Adults

  • Zhiting Zhang;Qingfeng Zhang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.72-89
    • /
    • 2024
  • Depression is a common disorder among the elderly, significantly affecting their quality of life. Traditional dance interventions, although beneficial, have limitations in convenience, personalization, and retention. With the advent of digital technology, digital dance interventions have emerged as a potential solution to these limitations. This paper involves an extensive review of literature on digital dance interventions. Research databases were searched for studies that focus on the use of digital dance in treating depression among older adults. The review also includes analyses of the advancements in digital dance technology, its application in therapeutic settings, and the evaluation of its efficacy. The paper identifies three main challenges in the current digital dance intervention research: real-time dynamic assessment, multimodal dance generation, and improving compliance. Despite these challenges, digital dance interventions show promise in addressing the limitations of traditional dance therapy. The research suggests that the integration of human-computer interaction and personalized approaches in digital dance interventions could significantly improve outcomes in elderly patients with depression. Digital dance interventions represent a novel and promising approach to treating depression in older adults. Future research should focus on overcoming the identified challenges and enhancing the effectiveness of these interventions.

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.