• 제목/요약/키워드: Dye-Sensitized Solar Cell$TiO_2$ Particle Size

검색결과 23건 처리시간 0.036초

RF 스퍼터링 증착된 $TiO_{2}$ 박막의 염료감응형 태양전지 적용 연구 (Sputter Deposition and Surface Treatment of $TiO_{2}$ films for Dye-Sensitized Solar Cells using Reactive RF Plasma)

  • 김미정;서현웅;최진영;조재석;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.309-312
    • /
    • 2007
  • Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide($TiO_{2}$) films on indium tin oxide(ITO) coated glass substrate for dye-sensitized solar cells(DSSCs). Anatase structure $TiO_{2}$ films deposited by reactive RF magnetron sputtering under the conditions of $Ar/O_{2}$(5%) mixtures, RF power of 600W and substrate temperature of $400^{\circ}C$ were surface-treated by inductive coupled plasma(ICP) with $Ar/O_{2}$ mixtures at substrate temperature of $400^{\circ}C$, and thus the films were applied to the DSSCs, The $TiO_{2}$ Films made on these exhibited the BET specific surface area of 95, the pore volume of $0.3cm^{2}$ and the TEM particle size of ${\sim}25$ nm. The DSSCs made of this $TiO_{2}$ material exhibited an energy conversion efficiency of about 2.25% at $100mW/cm^{2}$ light intensity.

  • PDF

다층구조의 $TiO_2$ 전극을 이용한 염료감응형 태양전지의 변환효율 (Conversion Efficiency of Dye-sensitized Solar Cells Using Multi-layered $TiO_2$ Electrodes)

  • 변홍복;윤태관;배재영
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.291-294
    • /
    • 2010
  • 최근 고효율 염료감응형 태양전지를 위한 다층구조의 $TiO_2$ 전극에 대한 연구가 관심을 받고 있다. 본 연구에서는 입자의 크기가 작고 큰 $TiO_2$로 이루어진 다층구조의 $TiO_2$ 전극에 대해 연구하였다. 나노구조를 갖는 $TiO_2$ 분말은 $TiCl_4$를 가수분해하여 합성하였다. 크기가 7.6 nm 및 18 nm인 $TiO_2$ 분말은 소성온도를 조절하여 얻었다. 다층구조를 갖는 $TiO_2$ 전극이 단락전류(Jsc)에 큰 영향을 미치는 것을 확인하였으며, 또한 다층구조를 갖는 $TiO_2$ 전극이 각각의 입자만을 사용한 염료감응형 태양전지 보다 변환효율이 증가함을 확인하였다.

형광체 첨가에 따른 염료감응형 태양전지의 효율 변화 (Efficiency Variation of Dye-Sensitized Solar Cell Influenced by Phosphor Additives)

  • 정성훈;황경준;강성원;정형곤;김선일;이재욱
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.227-233
    • /
    • 2009
  • 최근 태양전지에 대한 관심이 급증하면서 염료감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)에 관한 연구가 활발히 진행되고 있다. 염료감응형 태양전지에 관한 연구는 크게 $TiO_2$ 나노 결정 소재, 염료, 전해질 및 전도성 기판 등 4가지 분야로 나눌 수 있다. 본 연구에서는 염료를 흡착할 수 있는 나노결정성 $TiO_2$를 합성한 후, 이를 광전극용 페이스트(paste)에 다양한 형광물질(phosphor)의 종류 및 함량을 조절하여 첨가함으로써 염료감응형 태양전지의 효율에 미치는 영향을 조사하였다. 실험결과 400 nm 입자크기의 YAG계 형광체 0.5%가 첨가된 페이스트를 사용할 경우, 에너지 변환효율이 최대 8.31%에 도달함을 확인할 수 있었다.

TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향 (Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell)

  • 이현주;박노국;이태진;한기보;강미숙
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2013
  • 본 연구는 염료감응형 태양전지의 구성요소 중 핵심 소재로 주목받고 있는 티타니아($TiO_2$) 나노입자의 크기와 결정구조에 따른 광전 효율을 비교하고자 하였다. 나노입자의 크기는 용매열법(solvothermal method)을 이용하여 출발 용액의 pH를 조절하고 결정구조의 차이는 솔-젤법에 의해 얻어진 무정형의 티타니아를 온도를 달리하여 소성함으로써 조절되었다. 그 결과, 용매법으로는 8.9, 12.8 그리고 20.2 nm의 크기를 가지는 세 종류의 아나타제 티타니아를, 솔-젤법으로는 세 종류의 아나타제-루타일(anatase-rutile) 혼합결정구조를 가지는 티타니아를 얻었다. 여섯 종류의 샘플 중 20.2 nm 크기의 아나타제 결정구조의 티타니아를 광 전극으로 사용한 염료감응형 태양전지 단위 셀에서 8.6%로 가장 좋은 광전 효율을 얻었다.

Characterization of Photoelectron Behavior of Working Electrodes with the Titanium Dioxide Window Layer in Dye-sensitized Solar Cells

  • Gong, Jaeseok;Choi, Yoonsoo;Lim, Yeongjin;Choi, Hyonkwang;Jeon, Minhyon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.346.1-346.1
    • /
    • 2014
  • Porous nano crystalline $TiO_2$ is currently used as a working electrode in a dye-sensitized solar cell (DSSC). The conventional working electrode is comprised of absorption layer (particle size:~20 nm) and scattering layer (particle size:~300 nm). We inserted window layer with 10 nm particle size in order to increase transmittance and specific surface area of $TiO_2$. The electrochemical impedance spectroscope analysis was conducted to analysis characterization of the electronic behavior. The Bode phase plot and Nyquist plot were interpreted to confirm the internal resistance caused by the insertion of window layer and carrier lifetime. The photocurrent that occurred in working electrode, which is caused by rise in specific surface area, increased. Accordingly, it was found that insertion of window layer in the working electrode lead to not only effectively transmitting the light, but also increasing of specific surface area. Therefore, it was concluded that insertion of window layer contributes to high conversion efficiency of DSSCs.

  • PDF

염료감응형 태양전지용 나노다공질 TiO$_2$ 전극막의 제조 (Manufacturing of mesoporous TiO2 film for dye-sensitized solar cell)

  • 이동윤;구보근;이원재;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.308-311
    • /
    • 2003
  • The mesoporous TiO2 film for the dye-sensitized solar cell was prepared by the spin coating using nano particle $TiO_2$ slurry. In order to obtain the good dispersion of nano size $TiO_2$ particles in slurry, the pH of solvent, the sort and quantity of solvent additive and the quantity of surfactant were adjusted. The experimental range of pH was $2\;{\sim}\;4$. The basic solvent for slurry was dilute $HNO_3$ and the solvent additives were ethylene glycol, propylene glycol and butylene glycol. The degree of particle dispersion was indirectly estimated by the viscosity of slurry and the microstructure after sintering. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute $HNO_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO2 film using the dilute HNO3 solvent of pH 2 with the addition of ethylene glycol, propylene glycol and neutral surfactant.

  • PDF

염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성 (Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells)

  • 박경희;김은미;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

최적 $TiO_2$ 전극 두께 및 광산란 증가에 의한 염료감응형 태양광전지의 효율 개선 (Improving the Performances of Dye-Sensitized Solar Cell by the Optimal $TiO_2$ Photoelectrode Thickness and Light-Scattering Enhancement)

  • 우증연;권현규;박창용
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.37-44
    • /
    • 2014
  • In this study, the performance of dye-sensitized solar cells with different thickness of the photelectrode film was simulated by using the electron-diffusion differential model. Through this simulation, the relationships between the thickness of the photoelectrode film and the performances (open-circuit voltage, short-circuit current density, and overall photoelectric-conversion efficiency) of cells were understood and the performances with different thickness of the photoelectrede film were also examined. For considering the refractive index in the liquid electrolyte and exploring the scattering effect of titanium dioxide particles with different sizes using the Mie light-scattering theory, the highest scattering effect of each particles was found out and the optimal size of the titanium dioxide particle was determined for light scattering in the photoelectrode film of dye-sensitized solar cell. Through experiment, the mixed titanium dioxide cell was better than the single titanium dioxide cell and generated a higher overall conversion efficiency because the optimal titanium dioxide particles in the phoelectrode film as light scattering.

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

Charge Transport Characteristics of Dye-Sensitized TiO2 Nanorods with Different Aspect Ratios

  • Kim, Eun-Yi;Lee, Wan-In;Whang, Chin Myung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2671-2676
    • /
    • 2011
  • Nanocrystalline $TiO_2$ spherical particle (NP) with a dimension of 5 ${\times}$ 5.5 nm and several nanorods (NR) with different aspect ratios (diameter ${\times}$ length: 5 ${\times}$ 8.5, 4 ${\times}$ 15, 4 ${\times}$ 18 and 3.5 ${\times}$ 22 nm) were selectively synthesized by a solvothermal process combined with non-hydrolytic sol-gel reaction. With varying the molar ratio of TTIP to oleic acid from 1:1 to 1:16, the NRs in the pure anatase phase were elongated to the c-axis direction. The prepared NP and NRs were applied for the formation of nanoporous $TiO_2$ layers in dye-sensitized solar cell (DSSC). Among them, NR2 ($TiO_2$ nanorod with 4 ${\times}$ 15 nm) exhibited the highest cell performance: Its photovoltaic conversion efficiency (${\eta}$) of 6.07%, with $J_{sc}$ of 13.473 mA/$cm^2$, $V_{oc}$ of 0.640 V, and FF of 70.32%, was 1.44 times that of NP with a size of 5 ${\times}$ 5.5 nm. It was observed from the transient photoelectron spectroscopy and the incident photon to current conversion efficiency (IPCE) spectra that the $TiO_2$ films derived from NR2 demonstrate the longest electron diffusion length ($L_e$) and the highest external quantum efficiency (EQE).