• 제목/요약/키워드: Dye-Function

검색결과 113건 처리시간 0.019초

Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성 (Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes)

  • 이민규;윤종원;서정호
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.771-777
    • /
    • 2017
  • Carbon nano tubes (CNTs)를 흡착제로 사용하여 회분식 실험을 통해 염료 Eosin Y의 흡착특성을 조사하였다. 본 연구에 사용된 CNTs는 비표면적이 $106.9m^2/g$, 기공부피는 $1.806cm^3/g$, 기공직경은 $163.2{\AA}$이었다. CNTs를 이용한 Eosin Y의 흡착실험은 흡착시간, 초기 pH (2~10), 염료 농도(100, 150 및 200 mg/L), 흡착제의 양(0.05~1.0 g)과 온도(293, 313 및 333 K)를 변수로 사용하여 수행하였다. 흡착은 pH와 온도가 낮을수록 잘 이루어졌으며, Langmuir 모델식에 잘 적용되었다. 또한 흡착반응은 유사 2차 속도식에 잘 적용되었으며, 온도가 증가함에 따라 흡착량이 감소하였다. 입자 내 확산 모델 결과는 흡착 과정에서 막확산과 입자확산이 동시에 일어나는 것을 시사해 주었다. 열역학적 해석에 의하면 CNTs에 의한 염료 Eosin Y의 흡착은 자발적이고 흡열특성을 보였다.

펄스폭 연속가변 Quenched Dye Laser (Continuous pulse width variable quenched dye laser)

  • 황선우;이영주;김성훈;최종운
    • 한국광학회지
    • /
    • 제10권2호
    • /
    • pp.152-156
    • /
    • 1999
  • 여기밀도 변화에 따른 펄스폭 연속 가변 Quenched Dye Laser(Q이)를 설계 제작하여 그 동작 특성을 분석하였다. 펌핑광원은 펄스폭 20 ns(FWHM), 에너지 150mJ의 XecCl 엑시머 레이저를 사용하였으며, 색소레이저의 활성매질은 Rhodamine 6G로서 에탄올(ethanol)용액에 2.5$\times$10-3[mol/l]의 농도로 용해되었다. 활성길이 5 nm인 색소셀에서 서로 평행한 양면을 공진기로 구성하여 색소레이저의 이완발진 출력특성을 얻었다. 이완발진의 펄스열에서 단일 펄스를 추출하기 위해 QDL를 구성하였다. QDL의 펄스폭을 가변하기 위해 초점거리 f=150 mm 접속렌즈를 이동시켜 색소셀에 조사되는 공간적 펌핑폭을 조절함으로써 여기밀도를 8.8$\times$1023[cm-3s-1]~2.8$\times$1023[cm-3s-1]까지 가변시켰다. 공간적 펌핑폭에 따른 펄스폭 가변 실험을 수행한 결과 QDL의 발진 펄스폭이 86 ps~201 ps 사이에서 연속적으로 가변됨을 알 수 있었다.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • 유현준;;김현철;김명준;양윤정;이선희;신현정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

기포탑 유동에서의 기포분율과 혼합정도의 상관관계 (Relationship between void fraction and mixing in bubble column flow)

  • ;이주범;박형민
    • 한국가시화정보학회지
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2017
  • Control of mixing and transport processes are the key areas that can be benefited by understanding the hydrodynamics in gas-liquid two-phase flows. In particular, the enhanced bubble-induced liquid-phase mixing is known to be a function of void fraction distribution, gas phase velocity and so on. To further our insight on the characteristics of the liquid-phase mixing induced by the bubbles, in the present study, we experimentally investigate the mixing performance of a rectangular bubble column while changing the void fraction from 0.006 to 0.075%. A shadowgraphy technique is used to measure the gas-phase properties such as void fraction and size/velocity of bubbles. On the other hand, we use dye visualization with low diffusive buoyant dye to directly measure the level of mixing. Finally, we confirm that the time taken for full mixing scales with the inverse of volume void fraction.

천연 괴화 염색 면직물의 자외선 차단 효과 (UV Protection Effect of Natural Dyed Cotton Using Flos Sophorae)

  • ;안춘순
    • 한국의류학회지
    • /
    • 제44권5호
    • /
    • pp.906-922
    • /
    • 2020
  • Efficacy of Flos Sophorae as UV protective dye was examined in comparison to standard dyes of quercetin and rutin. Cotton was dyed using Flos Sophorae extract, quercetin, and rutin with 2 different concentrations for each dye. Each type of dyeing applied a temperature of 70℃ or 90℃ and a time of 30 min or 60 min. Color values of dyed samples were examined using a spectrocolorimeter. HPLC-DAD analysis indicated the amount of quercetin and rutin contained in Flos Sophorae used in the study. UPF values of dyed samples were measured using an ultraviolet transmittance analyzer. Experimental results indicated that dyeing cotton with Flos Sophorae extract, quercetin, or rutin increased the UPF value and decreased the UVA and UVB transmittance (%) regardless of dyeing conditions. A higher rank of UPF values were shown in cotton dyed using the Flos Sophorae extract that implied the possible concerted effect of quercetin, rutin, and flavonoid compounds contained in Flos Sophorae. The results indicated that Flos Sophorae is an effective natural dye that can improve the UV protective function of summer cotton fabric.

Porosity and Liquid-phase Adsorption Characteristics of Activated Carbons Prepared From Peach Stones by $H_3PO_4$

  • Attia, Amina A.;Girgis, Badie S.;Tawfik, Nady A.F.
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.89-95
    • /
    • 2005
  • Crushed peach stone shells were impregnated with $H_3PO_4$ of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by $N_2$ adsorption at 77 K using the BET-equation and the ${\alpha}$-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % $H_3PO_4$. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of $H_3PO_4$ concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of $H_2O$ molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (${\leq}$ 120 min) at two initial dye concentrations.

  • PDF

색소 농도에 따른 형광 광자의 계수율 : 광자 검출기의 dead time 효과 (Fluorescence photon counting rate as a function of dye concentration: Effect of dead time of photon detector)

  • 고동섭
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.353-355
    • /
    • 1997
  • 공초점 형광 현미경과 단일 광자 계수기로 구성되어 있는 단일 분자 검출장치를 사용하여, 색소 농도에 따른 광자 계수율의 변화를 관측하였다. 농도가 증가함에 따라 계수율이 포화하는 경향을 보였으며, 광검출기의 죽은 시간을 고려하여 측정 결과를 설명하였다. 계수율과 검출 부피, 광검출기의 양자효율, 입사 광량 사이의 관계를 나타내는 관계식을 제시하였다. 또한 신호대 잡음비에 대해서도 간략하게 논하였다.

  • PDF

Nanoarchitectures for Enhancing Light-harvesting and Charge-collecting Properties in Dye-sensitized Solar Cells

  • 정현석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.13.1-13.1
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) [1-5]. In this presentation, we introduce inverse opal-based scattering layers containing highly crystalline anatase nanoparticles and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength. A new ITO nanowire-based photoelecrode is also introduced and its unique charge collection property is presented, demonstrating potential use for highly efficient charge collection in DSSC.

  • PDF

Nanostructured Photoelectrode Materials for Improving Light-Harvesting Properties in DSSCs

  • 정현석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.7.2-7.2
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO). In this presentation, we introduce monodisperesed TiO2 nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Inverse opal-based scattering layers containing highly crystalline anatase nanoparticles are also introduced and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength.

  • PDF

안료날염에 관한 연구 (A Study on Pigment Printing)

  • 정현미
    • 한국의상디자인학회지
    • /
    • 제3권2호
    • /
    • pp.107-119
    • /
    • 2001
  • Compared on dye, pigment is not colored to textiles, fixed by binders, so it has been used for less expensive textiles. However, the function of a binder hs been improved s organic chemical industry develops, and the flexibility and softness of textiles hs gotten better. Some of dye printing is being replace by pigment printing. Pigment printing skills illuminated and make colors represented cleariy. Since their durabillty is reasonably good and washing processes are not needed, further development of these printing skills are predictable. This study suggests color samples though theoretical researches and experiments on pigment printing that causes less pollution and en be colored on any type of textiles. Especially, over printing can be used in industrial fields because it saves processing and expense. For the improvement of pigment printing skills, more improved studies on binders are expected.

  • PDF