• Title/Summary/Keyword: Dye sensitized

Search Result 648, Processing Time 0.028 seconds

Electrochemical Properties of Carbon Nano-tube as the Counter Electrode of Dye-sensitized solar cell (염료감응형 태양전지의 상대전극 재료로서 탄소나노튜브의 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung;Lee, Dae-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1090-1094
    • /
    • 2004
  • Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.

Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells (불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성)

  • Lee, Sung Kyu;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-466
    • /
    • 2011
  • In this study, the fluorine doped $TiO_2$ was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped $TiO_2$ was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on $TiO_2$. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of $TiO_2/TiOF_2$ in photoelectrode based on reduced $TiOF_2$ energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on $TiO_2$ in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.

A Study on the Characteristics of Dye Sensitized Solar Cells with Cell Area and Dye Absorption Time (셀 면적 및 흡착시간에 따른 염료감응형 태양전지 특성에 관한 연구)

  • Lee, Don-Kyu;Song, Young-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.595-600
    • /
    • 2012
  • In this paper, it is investigated the characteristics of DSSC(Dye Sensitized Solar Cell) with cell area(0.25, 1, 2.25 $cm^2$) and dye absorption time(12, 24, 36 h). Thus, we obtain the following results by using the EIS, UV-VIS, I-V measurement. When the cell area increases, the efficiency decreases to 21~32 percent because of the increase about 40~$60{\Omega}$ of internal impedance regardless of dye absorption time. When the absorption time increases up to 24 hours, the efficiency increases to over 40 percent cause of the reduction of internal impedance regardless of cell area. When the dye absorption time becomes 36 hours, the internal impedance increases and at the same time, in the range of 600~700 nm, as the optical absorption reduces. Therefore, the efficiency decreases to 19~31 percent. When it is absorbed the dye for 24 hours in the smallest cell area which is 0.25 $cm^2$, the DSSC has the best efficiency (7.11 %).

Development Trends and Perspectives of Dye-Sensitized Solar Cells (염료감응 태양전지 개발동향 및 전망)

  • Kang , Moon-Sung;Kang , Yong-Soo
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2005
  • Dye-sensitized solar cells(DSSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion in the injection of electrons from a photoexcited stateof a dye sensitizer into the conduction band of the nanocrystalline $TiO_2$ semiconductor upon absorption of light. It is believed that the DSSC is one of the most promising technologies to solve the significant energy problems. In this article, the development trends and perspective of DSSCs were reviewed.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Fabrication and Characterization of Dye-sensitized Solar Cells based on Anodic Titanium Oxide Nanotube Arrays Sensitized with Heteroleptic Ruthenium Dyes

  • Shen, Chien-Hung;Chang, Yu-Cheng;Wu, Po-Ting;Diau, Eric Wei-Guang
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.16-19
    • /
    • 2014
  • Anodic self-organized titania nanotube (TNT) arrays have a great potential as efficient electron-transport materials for dye-sensitized solar cells (DSSC). Herewith we report the photovoltaic and kinetic investigations for a series of heteroleptic ruthenium complexes (RD16-RD18) sensitized on TNT films for DSSC applications. We found that the RD16 device had an enhanced short-circuit current density ($J_{SC}/mAcm^{-2}=15.0$) and an efficiency of power conversion (${\eta}=7.2%$) greater than that of a N719 device (${\eta}=7.1%$) due to the increasing light-harvesting and the broadened spectral features with thiophene-based ligands. However, the device made of RD17 (adding one more hexyl chain) showed smaller $J_{SC}(14.1mAcm^{-2})$ and poorer ${\eta}(6.8%)$ compare to those of RD16 due to smaller amount of dye-loading and less efficient electron injection for the RD17 device than for the RD16 device. For the RD18 dye (adding one more thiophene unit and one more hexyl chain), we found that the device showed even lower $J_{SC}(13.2mAcm^{-2}) $ that led to a poorest device performance (${\eta}=6.2%$) for the RD18 device. These results are against to those obtained from the same dyes sensitized on $TiO_2$ nanoparticle films and they can be rationalized according to the electron transport kinetics measured using the methods of charge extraction and transient photovoltage decays.

Sol-Gel Derived Nitrogen-Doped TiO2 Photoanodes for Highly Efficient Dye-Sensitized Solar Cells

  • Kim, Sang Gyun;Ju, Myung Jong;Choi, In Taek;Choi, Won Seok;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • N-doped anatase $TiO_2$ nanoparticles were prepared by the sol-gel process followed by a hydrothermal treatment and successfully used as the photoanodes in organic dye-sensitized solar cells (DSSCs). As expected, the power conversion efficiency (PCE) of 8.44% was obtained for the NKX2677/HC-A-sensitized DSSC based on the 30 mol% N-doped $TiO_2$ photoanode, which was an improvement of 23% relative to that of the DSSC based on the NKX2677/DCA.

Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells (염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계)

  • Hwang, Seongjin;Jung, Hyunsang;Jeon, Jaeseung;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

A Study on the Characteristics of Dye-Sensitized Solar Cell Using Nb2O5 Semiconductor Oxides (Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성 연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.330-333
    • /
    • 2019
  • Various studies on dye-sensitized solar cells, which are cheaper to manufacture and have superior stability than silicon solar cells, are continuously conducted. In this study, the properties of dye-sensitized solar cells were studied using semiconductor oxides made by mixing $TiO_2$ and $Nb_2O_5$. By adding $Nb_2O_5$ in different proportions, the solar cell was made, and the surface area and electrical characteristics of this cell were measured. As $Nb_2O_5$ was added, the contact area of dye and electrolyte increased and the short-circuit current, open voltage, fill factor and conversion efficiency of dye-sensitized solar cells were confirmed to be improved.

Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives (염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망)

  • Kwon, Young Jin;Kim, Hwan Kyu
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.