• Title/Summary/Keyword: Dye oxidation

Search Result 114, Processing Time 0.026 seconds

Decolorization of Rhodamine B using Rotating Disk Photocatalytic Reactor (회전원판 광촉매 반응기(Rotating Disk Photocatalytic Reactor)를 이용한 Rhodamine B의 색 제거)

  • Park, Young Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • The photocatalytic oxidation of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and rotating disk photocatalytic reactor. Immobilized $TiO_2$ onto the surface of the aluminum plate was employed as the photocatalyst and two 20 W germicidal lamps and two 20 W UV-BLB lamps were used as the light source and the reactor volume was 1.0 L. The effects of parameters such as the number of rotating disk, rpm of rotating disk, the number of coating, $H_2O_2$ and photo-fenton amounts, and the concentrations of anions and cations ($NO_3{^-}$, $SO_4{^{2-}}$, $Cl^-$, $Ca^{2+}$, $Zn^{2+}$, $Na^+$) were examined.

Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(I) (전기분해와 UV 조사에 의한 수중의 Rhodamine B의 제거(I))

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • The feasibility study for the application of the removal and mineralization of Rhodamine B (RhB) was performed in a batch electrochemical reactor. The electro/UV process was consisted of DSA (dimensionally stable anode) electrode and UV-C or ozone lamp. The experimental results showed that RhB removal by the ozone lamp was higher than that of the UV-C lamp. Optimum current of the electro/UV process was 1 A. The electrochemical, UV and electro/UV process could completely degrade RhB, while a prolonged treatment was necessary to reach a high level RhB mineralization. It was observed that RhB removal in electro/UV process is similar to the sum of the UV and electrolytic decolorization. However, it was found that the COD of RhB could be degraded more efficiently by the electro/UV process (90.2 %) than the sum of the two individual oxidation processes [UV (19.7%) and electrolytic process (50.8%)]. A synergetic effect was demonstrated between the UV and electrolysis.

First Principles Study of spin polarization in Fe-doped monolayer C2N-h2D

  • Lee, Sang Yoon;Jeong, Geumbi
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.336-338
    • /
    • 2016
  • Recent multifunctional two-dimensional material research has triggered huge interests in various modifications for substitution of atoms. Instead of novel metals used as the most popular catalysts, nonprecious transition metals are promising candidates for efficient oxidation-reduction transfers. The recent discovery of $Co@C_2N$ has an alternate possiblity as catalysts for the ORR(Oxygen Reduction Reaction) in DSSc(Dye Sensitized Solar Cell) and OER(Oxygen evolution cobalt oxides). Here we report spin-polarized DFT calculations of the structure doped Iron that is one of ferromagnetism atoms like Co to provide a basic desciption of the ferromagnetism of the elemental metals. The spin-density-funtional results present the most stable state energetically is when having pairwise up/down spin.

  • PDF

Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC (염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

Decolorization of Rhodamine B by Photo-Fenton Oxidation (광-펜톤 산화반응을 이용한 Rhodamine B의 탈색)

  • Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.274-280
    • /
    • 2007
  • The photochemical decolorization of Rhodamine B (RhB) in water has been carried out by photo-Fenton process. The effect of applied $H_2O_2$, $Fe^{2+}$ dose, solution pH and UV dose have been studied. The influence of constituent processes of photo-Fenton such as UV, $H_2O_2$ and Fenton has been investigated. Comparison of RhB removal was made between the photo-Fenton and $UV/H_2O_2$ process. The results obtained showed that the optimum dosage of $Fe^{2+}$ and $H_2O_2$ were 0.0031 mmol and 0.625 mol, respectively. pH 3 is found to be the optimum pH of for photo-Fenton process. pH and UV dose strongly influenced the decolorization of RhB in photo-Fenton process. The photo-Fenton and $UV/H_2O_2$ processes showed similar decolorization and seem to be appropriate for the decolorization of dye wastewater.

Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions (반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Lee, Byung-Hwan;Kim, Tak-Hyun;Lee, Jin-Won;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

A study of Ozone Oxidation of Methylene Blue (Methylene Blue의 오존(O3) 산화반응에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.366-371
    • /
    • 2005
  • In this study treatment efficiencies of methylene blue were evaluated in term of BOD, COD, TOC, absorbance and initial decolorization rates. Ozonation of the dye in distilled water was performed in a laboratory scale cylindrical batch reactor. The decolorization process of methylene blue was carried out by bubbling ozone at the bottom of a bubble column reactor containing the dye solution. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the (${\lambda}_{max}$, 660 nm), was almost complete after 40 min with an ozone concentration of $50{\pm}10mg/L$. The $TOC/TOC_0$ ratio after ozonation was about 83.8%, the COD was diminished to 44.0% of the initial value. The $BOD_5/COD$ ratio was increased from 64.2% to about 90.8%, indicating an enhancement of biodegradable compounds in the ozonated solutions. The pseudo first-order rate constants of the ozonation was $3.30{\times}10^{-2}min^{-1}$ and the activation energy was $3.01kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

Degradation of Chlorinated Phenolic Compounds by Soil Actinomycetes Isolated from the Contami-nated Soil Nearby the Kyung-An River (경안천 유역 오염토양에서 분리한 방선균의 염화 페놀계 화합물 분해)

  • 김성민;김창영;김응수
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.287-292
    • /
    • 2002
  • Lignin-peroxidase (LiP) has been considered as one of the most important industrial enzymes for biodegradation of various recalcitrant toxic compounds such as chlorinated aromatic hydrocarbons and azo-dyes. Recently, several soil actinomycetes have been reported to secrete a functionally-similar lignin-peroxidase called actinomycetes lig-nin-peroxidase (ALiP). In this manuscript, we isolated over 100 morphologically distinct actinomycetes from the contaminated soils around 10 different gas stations located nearby the Kyung-An river. Among these actinomycetes screened based on the congo-red dye-decolorization activities, one newly-isolated actinomycetes named SMA-2 showed the most significant dye-decoloring activity on the congo-red plate as well as a significant ALiP activity in a yeast-extract-malt-extract liquid media supplemented with starch. The optimum SMA-2 culture condition fur ALiP production was determined and the kinetic parameters fur the SMA-2 AkIP activity were characterized. The optimally-cultured SMA-2 also exhibited the oxidation activities toward various recalcitrant aromatic compounds including phenol, 2- chlorophenol, 4- chlorophenol, 2,4- dichlorophenol ,2,6- dichlorophenol, and 2,4, f-trichlorophe - not, suggesting a potential application of SMA-2 for contaminated soil bioremediation.

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.