• Title/Summary/Keyword: Dye degradation

Search Result 207, Processing Time 0.026 seconds

Degradation of synthetic dye in water by solution plasma process

  • Panomsuwan, Gasidit;Morishita, Tetsunori;Kang, Jun;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.888-893
    • /
    • 2016
  • In this study, the solution plasma process was utilized with the aim of degrading synthetic dyes in water at atmospheric pressure. The experiments were conducted in a batch-type reactor consisting of a symmetric wire-wire electrode configuration with rhodamine B (RhB) as the target synthetic dye. The effects of the plasma treatment time and initial dye concentration on the RhB degradation were investigated by monitoring the change in absorbance of RhB solutions. The RhB solutions turned lighter in color and finally colorless with prolonged plasma treatment time, indicating the destruction of dye molecules. The RhB solutions were found to have degraded, following the first-order kinetic process. However, for high initial RhB concentrations, another kinetic process or factor seems to play a dominant role at the initial degradation stage. The fitted first-order rate constant decreased as the initial concentration increased. This result suggests that the degradation behavior and kinetic process of the RhB solution strongly depends on its initial concentration. The RhB degradation is considered to be due to a combination of factors, including the formation of chemically oxidative species, as well as the emission of intense UV radiation and high-energy electrons from the plasma. We believe that the solution plasma process may prove to be an effective and environment-friendly method for the degradation or remediation of synthetic dye in wastewater.

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Removal of Rhodamine Dye from Water Using Erbium Oxide Nanoparticles

  • Luaibi, Hasan M.;Al-Taweel, Saja S.;Gaaz, Tayser Sumer;Kadhum, Abdul Amir H.;Takriff, Mohd S.;Al-Amiery, Ahmed A.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.747-752
    • /
    • 2019
  • Environmental pollution remains a considerable health risk source all over the world; however, hazards are usually higher in developing countries. Iraq has long been suffering from the problem of pollution and how to treat pollution. Photocatalytic degradation has turned out to be most productive process for dye degradation. In this investigation, Rhodamine B (RhB), dye has been selected for degradation under visible light illumination. To address this issue, we fabricate erbium trioxide nanoparticles (Er2O3/NPs). Erbium trioxide nanoparticles are prepared and utilized for photo-catalytic degradation. The characterization of Er2O3/NPs is described and confirmed by utilizing of XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). The average size of Er2O3 nanoparticles is observed to be 16.00 nm. Er2O3/NPs is investigated for its ability of photo-catalytic degradation through certain selected parameters such as concentration and time. The methodological results show that the synthesized Er2O3/NPs is a good photo-catalytic for Rhodamine degradation.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Degradation and Detoxification of Disperse Dye Scarlet RR by Galactomyces geotrichum MTCC 1360

  • Jadhav, S.U.;Ghodake, G.S.;Telke, A.A.;Tamboli, D.P.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.409-415
    • /
    • 2009
  • Galactomyces geotrichum MTCC 1360 degraded the Scarlet RR(100 mg/l) dye within 18 h, under shaking conditions(150 rpm) in malt yeast medium. The optimum pH and the temperature for decolorization were pH 12 and $50^{\circ}C$, respectively. Enzymatic studies revealed an induction of the enzymes, including flavin reductase during the initial stage and lignin peroxidase after complete decolorization of the dye. Decolorization of the dye was induced by the addition of $CaCO_3$ to the medium. EDTA had an inhibitory effect on the dye decolorization along with the laccase activity. The metabolites formed after complete decolorization were analyzed by UV-VIS, HPLC, and FTIR. The GC/MS identification of 3 H quinazolin-4-one, 2-ethylamino-acetamide, 1-chloro-4-nitro-benzene, N-(4-chloro-phenyl)-hydroxylamine, and 4-chloro-pheny-lamine as the final metabolites corroborated with the degradation of Scarlet RR. The phytotoxicity study revealed the nontoxic nature of the final metabolites. A possible degradation pathway is suggested to understand the mechanism used by G. geotrichum and thereby aiding development of technologies for the application of this organism to the cleaning-up of aquatic and terrestrial environments.

Elimination of COD and Color of Dye by UV/H2O2, UV/TiO2 System (UV/H2O2, UV/TiO2 시스템에서 염료의 색도 및 COD 제거)

  • Kim, Kei-Woul;Park, Joung Mi;Sim, Su-Jin;Yee, Hi-Joung;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.51-56
    • /
    • 2000
  • The Photocatalytic decolorization and degradation of commercial dyes were studied using a batch reactor. Degussa P25 titanium dioxide and $H_2O_2$ were used as the photocatalyst and proved to be effective for dyes degradation when they were irradiated with UV light. The light source was a 20W low pressure mercury lamp. Three different kinds of dyes, such as direct dye(congo red), acid dye (acid black) and disperse dye(disperse blue) were tested. Extending the UV only treatment up to 120min, direct dye was decolorized to 60% and degraded to 30% as COD. On the other side, acid and disperse dyes were eliminated less than 10% as color and COD. But, color and COD were eliminated about 90% for all of the three dyes by $UV/H_2O_2$ system. And then the most effective decolorization was done for direct dye with 96% removal efficiency by $UV/TiO_2$ system at 120min with 500mg/L of $TiO_2$.

  • PDF

Preparation of Ag2Se-Graphene-TiO2 Nanocomposite and its Photocatalytic Degradation (Rh B)

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.388-394
    • /
    • 2017
  • Here, utilizing rhodamine B (RhB) as standard color dye, we examined the photo degradation proficiency of $Ag_2Se-Graphene-TiO_2$ nanocomposites under visible light irradiation; samples were prepared by ultrasonication techniques and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic investigation and UV-Vis absorbance spectra examination. Our outcomes demonstrate that the $Ag_2Se-G-TiO_2$ nanocomposite showed significant photodegradation efficiency as compared with those of $TiO_2-G$ and $Ag_2Se-G$, with around 85.2% of Rhodamine B (RhB) degraded after 180 min. It is concluded that the $Ag_2Se-G-TiO_2$ nanocomposite is a competent candidate for dye pollutants.

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Examination of Berberine Dye using GC-MS after Selective Degradation Treatments (GC-MS를 이용한 Berberine 염료의 퇴화 거동 연구)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.2002-2010
    • /
    • 2009
  • The degradation behavior of berberine is examined using GC-MS to select the fingerprint products that can be used to identify berberine dye in badly faded archaeological textiles. A total of $100^{\circ}C$ thermal and $H_2O_2/UV/O_2$ degradation systems were used to degrade berberine chloride 0.1% solution up to 408 hours. The samples were analyzed using the GC-MS. Dihydroberberine, 2-pteridinamine, 6,7-dimethyl-N-[(trimethylsilyl) oxy]-, and 8-methoxy-11-[3-methylbutyl]-11H-indolo[3,2-c]-quinoline, 5-oxide were detected as the major products of thermal degradation and identified as the fingerprint products for berberine dye at the early stage of degradation. Isobenzofuran-1,3-dione,4,5-dimethoxy-, 9H-fluorene,3,6-bis(2-hydroxyethyl)-,1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro-, and 3-tert-butyl-4-hydroxyanisole were detected as the major products generated by the $H_2O_2/UV/O_2$ degradation and identified as the fingerprint products for berberine dye under severe degradation conditions.