• Title/Summary/Keyword: Dye decolorization

Search Result 128, Processing Time 0.023 seconds

Treatment of Acid dye Using Microbial Immobilization (미생물 고정화를 이용한 산성염료의 처리)

  • 김정목;조무환;양용운
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 1999
  • Strains degrading and decolorizing acid dyes, Nylosan red E-BL 150%. were isolated from natural system, was named as ARK3. The optimal culture conditions of temperature and pH were $35^\circ{C}$, 7.0, respectively. Growth rate of cells in conditions of aerobic shaking more than standing culture conspicuously increased, and optical density of those to strain ARK3 were found as 1.38 and 0.25 after 42 hrs. Decolorization efficiency in batch culture which used as immobilization media to natural zeolite was 15% after 6 hrs, while suspension culture was 5%, also its of immobilization and suspension culture were 90% and 85% after 48 hrs, respectively. Decolorization efficiency of air-lift bioreactor was more than 90% to a dilution rate of $0.038hr^{-1}$, but that was decreased as 70%, when the dilution rate was $0.05hr^{-1}$. Even though at maximum dilution rate of this study, there was not appeared "wash out" phenomienon of biomass. Decolorization efficiency was 97.7% at a dilution rate of $0.025hr^{-1}$, when influent dye concentration was $100mg/\ell$. But if influent dye concentration increased as $150mg/\ell$, even though MLVSS increased, that of treatment water decreased as 93%. Also, when influent dye concentration increased as $200mg/\ell$ and $300mg/\ell$, decolorization efficiencies of treatment water abruptly decreased as 85% and 63%, respectively. Decolorization efficiency was more than 92% to the limit volumetric loading rate of $3.75mg/\ell\cdot{hr}$hr, without regard to variation of influent dye concentration or hydraulic retention time. if volumetric loading rate was more than $3.80mg/\ell\cdot{hr}$, at same condition, decolorization efficiency was lower decrease of retention time than increase of influent dye concentration.entration.

  • PDF

Decolorization of Aromatic Dyes by White Rot Fungus Coriolus hirsutus (흰구름버섯(Coriolus hirsutus)에 의한 방향족 염료의 탈색)

  • Song, Yeon-Hong;Choi, Chul-Min;Kim, Chang-Jin;Shin, Kwang-Soo
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.252-256
    • /
    • 1997
  • The white rot fungus Coriolus hiysutus decolorized several recalcitrant dyes. Four different types of dyes, including azo, triphenyl methane, heterocyclic, and polymeric dye, were treated by the mycelial preparation. Triphenyl methane dye, bromophenol blue lost over 95% of its color. Congo red and Poly R-478 were decolorized less than bromophenol blue, 57 and 55%, respectively. However, heterocyclic dye, methylene blue was not decolorized significantly and only red shift was observed. Extracellular laccase and peroxidase activities were appeared maximally in high level of dye decolorization media. In electrophoretic experiments, common active bands of laccase and peroxidase were found in all dye decolorized medium. These results indicated that the culture conditions which yield high levels of laccase and peroxidase activity lead to high levels of dye decolorization, and these two enzymes might be play an important roles in dye decolorization.

  • PDF

Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis Spores

  • Park, Jong-Hwa;Kim, Wooil;Lee, Yong-Suk;Kim, June-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1383-1390
    • /
    • 2019
  • In this study, we expressed cotA laccase from Bacillus subtilis on the surface of B. subtilis spores for efficient decolorization of synthetic dyes. The cotE, cotG, and cotY genes were used as anchoring motifs for efficient spore surface display of cotA laccase. Moreover, a $His_6$ tag was inserted at the C-terminal end of cotA for the immunological detection of the expressed fusion protein. Appropriate expression of the CotE-CotA (74 kDa), CotG-CotA (76 kDa), and CotY-CotA (73 kDa) fusion proteins was confirmed by western blot. We verified the surface expression of each fusion protein on B. subtilis spore by flow cytometry. The decoloration rates of Acid Green 25 (anthraquinone dye) for the recombinant DB104 (pSDJH-EA), DB104 (pSDJH-GA), DB104 (pSDJH-YA), and the control DB104 spores were 48.75%, 16.12%, 21.10%, and 9.96%, respectively. DB104 (pSDJH-EA) showed the highest decolorization of Acid Green 25 and was subsequently tested on other synthetic dyes with different structures. The decolorization rates of the DB104 (pSDJH-EA) spore for Acid Red 18 (azo dye) and indigo carmine (indigo dye) were 18.58% and 43.20%, respectively. The optimum temperature for the decolorization of Acid Green 25 by the DB104 (pSDJH-EA) spore was found to be $50^{\circ}C$. Upon treatment with known laccase inhibitors, including EDTA, SDS, and $NaN_3$, the decolorization rate of Acid Green 25 by the DB104 (pSDJH-EA) spore decreased by 23%, 80%, and 36%, respectively.

Biodegradation of Evercion Blue P-GR and Ostazin Black H-GRN in synthetic textile wastewater by membrane bioreactor system using Trametes versicolor

  • Gul, Ulkuye D.;Acikgoz, Caglayan;Ozan, Kadir
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • In this study, the decolorization of Evercion Blue P-GR (EBP) and Ostazin Black H-GRN (OBH) was investigated using white-rot fungi named as Trametes versicolor (T. versicolor) by Membrane Bioreactor (MBR) system. This study involved experiments employing synthetic textile wastewater in Membrane Bioreactor (MBR) system (170 ml), initially inoculated with a pure culture of fungi, but operated, other than controlling pH (4.5±0.2) and temperature (25±1℃), under non-sterile conditions. The effect of dye concentrations on fungal biodegradation was also investigated. The decolorization efficiencies were 98%, 90%, and 87% respectively, for EBP when the initial dye concentration of 50, 100, and 200 mg L-1 were used. However, the decolorization percentages for OBH dye were obtained 95% for 50 mg L-1 dye solution in 2 days and 66% for 100 mg L-1 dye solution in 5 days. Possible interactions between dye molecules and the fungal surface were confirmed by SEM, EDX, and FTIR analyses.

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

Decolorization of Textile Dyes by Geotrichum candidum (Geotrichum candidum을 이용한 염색 염료의 색도제거)

  • 고동욱;이진원;유영제;김의용
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2000
  • The results for decolorization of various dyes by Geotrichum candidum (KCTC 6195) showed that optimal initial pH, temperature and glucose concentration were 6, $30^{\circ}C$, and 30g/L. Light had no effect on the cell growth and decolorization efficiency. All the dyes - dispersive dyes, acid dyes and reactive dyes - used on the solid medium were also decolorized in a liquid medium, although the decolorizing rates varies depending on the dye structure. An energy source was essential for cell growth or decolorization because textile dyes did not support growth. The percentage of decolorization of Acid orange 10 was shown to be 91% for initial conc. 100ppm and 84% for initial conc. 500ppm. The biomass could adsorb the dyes such as Acid red 1;19.8%, Acid red 88; 73%, Acid orange 10; 12.1% Reactive blue 19; 14.6%. The dye removal was due to the sorption of dye to the fungal biomass as well as some extracellular enzymes. Color removal was enhanced up to 97% within 3 days by the addition of glucose after 2 days incubation.

  • PDF

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron (개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1717-1726
    • /
    • 2016
  • In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.

Decolorization of Dye and Molasses by Continuous and Semi-Continuous Jar-Fermentor Cultures of Geotrichum candidum Dec 1

  • Kim, S.J.;Kim, M.J.;Shoda, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Two culture modes, continuous and semi-continuous, of the decolorization fungus, Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture of G. candidum Dec 1 using a 5-I jar-fermentor showed high DyP activity at a low dilution ratio of $0.005h^{-1}$, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productiveity in the drawn culture broth was 26.6U/day, whereas the peroxidase productiveity was 17.9U/day in the continuous culture with a dilution rate of $0.005h^{-1}$. The semi-continuous treatment system was an efficient decolorization method for the strain, G. candidum Dec 1.

Effect of Culture Parameters on the Decolorization of Remazol Brilliant Blue R by Pleurotus ostreatus

  • Kim, Bok-Sun;Ryu, Seong-Joo;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • The influences of culture parameters on the decolorization of anthron-type dye, Remazol brilliant blue R(RBBR) by Pleurotus ostreatus were studied in defined media. In the decolorization, 1-10 mM nutrient nitrogen and 40 mM glucose were effective whereas agitation and Tween 80 were not suitable. The decolorization occurred and the activity of extracellular peroxidase was detected during the stationary phase.

  • PDF