• Title/Summary/Keyword: Dye analysis

Search Result 558, Processing Time 0.028 seconds

A Study on the Color of Natural Solvent for the Red Color Reproduction of Safflower

  • Lee, Mi Young;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Safflower, a natural dye representing red, is the dye that materials and dyeing method are recorded in the literature, including materials and dyeing. Although the safflower is the same, the ash used as a mordant is recorded differently in each literature, which greatly affects the aesthetic perspective in realizing the traditional safflower red. Therefore, the optimal conditions for realizing the traditional safflower red were sought. The experiment was conducted by pH investigation, dyeing and color analysis by dyeing solution water, concentration, and temperature by ash, and the unique color of red was confirmed. As a result of the test, the pH point of time when the uniq ue color was expressed was 11.53 as goosefoot ash (natural bedrock water), which was 1:100 for concentration and 70℃ for temperature, which was easier to extract red pigment than other ash, indicating that it is suitable for safflower dyeing. The analysis of the ash showed that K and Si play an important role in dyeing, especially Si, which is an element that inhibits carthamon. The color of red was similar to that of KS Standard vivid purplish red in the ash of the goosefoot, and the other ash was deep purplish pink. In the light of findings, it was possible to quantify the dyeing method through traditional materials and find the standard color of red color, and it is judged to be a basic data for studying the unique color of natural materials.

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Identification of Clostridium perfringens AB&J and Its Uptake of Bromophenol Blue

  • Kim, Jeong-Dong;An, Hwa-Yong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Jung, Chang-Min;Kang, Kook_-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.544-552
    • /
    • 2002
  • Several microorganisms from rat and human feces and lumen fluid of cows were screened for their ability to decolorize the synthetic dyes. Consequently, a novel dye-degrading strain AB&J was isolated. Taxonomic identification including 165 rDNA sequencing and phylogenetic analysis indicated that the isolate had 99.9% homology in its 165 rDNA base sequence with Clostridium perfringens. After 27 h Incubation with the strain, brilliant blue R, bromophenol blue, crystal violet, malachite green, methyl green, and methyl orange were decolorized by about 69.3%, 97.7%, 96.3%, 97.9%, 75.1%, and 97.2%, respectively. The triphenlmethane dye, bromophenol blue, was decolorized extensively by growing Clostridium perfringens AB&J cells in liquid cultures under anaerobic condition, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly decolorized at a relatively lower concentration of below 50 $\mu g \;ml^{-1}$, however, the growth of the cells was mostly suppressed at a dye concentration of 100 $\mu g \;ml^{-1}$. The decolorization activity in cell-free extracts was much higher in cytoplasm than in periplasm and cytoplasmic membrane. Therefore, the enzyme related uptake of bromophenol blue seemed to be localized in cytoplasm. The optimal pH and temperature of bromophenol blue uptake fur decolorization activities were 7.0 and 4$0^{\circ}C$, respectively.

Analysis of Dyeing Components from Neolitsea sericea Koidz Bark (참식나무(Neolitsea sericea Koidz) 수피의 염착물질 분석)

  • Lee, Sang-Kueg;Jo, Hyun-Jin;Kim, Yun-Geun;Lee, Hak-Ju;Kang, Ha-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.64-72
    • /
    • 2006
  • Two compounds were isolated from the diethylether and ethyl acetate fraction of hot water extracts by TLC and column chromatography as dyeing components. The isolated compounds were characterized as H-dibenzoquinoline-2,10-diol,5,6,6a,7-tetrahydro-1,9-dimethoxy-6-methyl (compoundI) and lyoniresinol (compoundII) by NMR and Mass spectrophotometry. To investigate if the isolated compounds are involved in the dyeing process, HPLC analysis was used. The retention time of the components from dye used in the study and the dye decolorized from the dyed substrate, silk by ethyl acetate were compared to conform the identity of those compounds. The retention time of the components from the dye and decolorized solution were identical. As a results, those two compounds were considered as dye bound to the silk.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

  • Nnabuk Okon Eddy;Rajni Garg;Rishav Garg;Samson I. Eze;Emeka Chima Ogoko;Henrietta Ijeoma Kelle;Richard Alexis Ukpe;Raphael Ogbodo;Favour Chijoke
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m2/g, pore volume = 0.167 m3/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).

Effects of Hair Dyeing and Change of Hair Texture by Indigo Dye (인디고 염료에 의한 모발 염색효과와 모질의 변화)

  • Kim, Ju-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • This study was aimed to investigate the effects of hair dyeing and changes of hair quality by the application of indigo dye. Methods: Indigo dye was used after water bath. After application of the dye to healthy and bleached hair samples, they were treated with heat and remained naturally by different times. Each sample was measured before and after the application and compared for the analysis. To investigate the effects of dyeing, L⁎, a⁎, and b⁎ values and bleaching degree were measured using by color-difference meter. To understand the changes of hair quality, absorbance and gloss were measured using by tensile strength and methylene blue. Results: Upon the results of dyeing, all the samples showed the significant dyeing effects before and after the application in terms of L⁎, a⁎, and b⁎ values. With respect to the bleaching effects, it showed the greatest change on Day 1 and did not show any changes from Day 3. For the measurement of tensile strength, mean values of all the samples were increased. However, the results were not significant, statistically, demonstrating no change of hair quality. No statistically significant results were found in the samples except healthy 7L(3) sample upon the absorbance results using methylene blue. Gloss of samples was changed upon the statistical analysis results. Conclusion: Indigo dye showed the hair dyeing effects, significantly, while gloss was changed and tensile strength and absorbance were not changed in terms of hair quality. Further studies are required on the processing with a variety of dyes and on the measurements for reliability and objectivity.

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick;Yoo, Ki-Hyun;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

The Effects of Indigotin and Indirubin Pigments on the Dyeability and the Color of Silk Dyed with Indigo and Indirubin Mixed Dye (인디고 및 인디루빈 표준 혼합염료에서 인디고틴과 인디루빈 색소가 견직물에 대한 염착성과 색상에 미치는 영향 연구)

  • Yoo, Wansong;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.914-928
    • /
    • 2017
  • This research investigated the effect of pH of dyebath and dyeing temperature on the dyeability of indigotin and indirubin on silk as well as the relationship between the amount of indigotin and indirubin detected from the dyed silk through HPLC-DAD analysis and the color of samples measured using a spectro-colorimeter. Indigo standard dye and indirubin standard dye were deliberately mixed by ratios 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 to dye silk with a different pH of dyebath (7, 11) and different dyeing temperatures ($50^{\circ}C$, $70^{\circ}C$). The amount of indigotin and indirubin pigments in silk was calculated using regression equations obtained from standard calibration curves of indigotin and indirubin. A higher indigotin percent ratio resulted in the higher K/S values and the higher amount of indigotin detected from silk. However, higher indirubin percent ratio in the mixed dye did not relate to the higher indirubin pigment detected in silk. While indirubin showed low or negative contribution to the K/S values, it showed a higher effect on the color of dyed silk. Higher amounts of indirubin in dyed silk resulted in a darker PB color, which led to P color with increases in indirubin content.