• Title/Summary/Keyword: Dust removal efficiency

Search Result 95, Processing Time 0.028 seconds

The Characteristics of Dust Removal in Flue Gas by the Plasma of Impulse Streamer Corona (충격식 코로나 방전 플라즈마를 이용한 배연가스로부터 먼지제거에 대한 특성)

  • 김은호
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1261-1267
    • /
    • 2003
  • On the basis of the distribution of particle size measured by laser diffraction spectrometers, this research was carried out to investigate the characteristics of mist removal with the change of operating condition in the plasma reactor of impulse streamer corona. The operating parameters in this experiment were power of impulse streamer corona, gas velocity, impulse generation time, gas temperature, and SOx/NOx concentration. The collection efficiency T(d) was estimated by the distribution of particle size in the collection zone through the advanced model.

Performance Evaluation of a Hybrid Dust Collector for Removal of Airborne Dust in Urban Railway Tunnels (도시철도 터널 미세먼지 제거용 하이브리드형 집진장치의 성능평가)

  • Woo, Sang Hee;Kim, Jong Bum;Jang, Hong Ryang;Kwon, Soon Bark;Yook, Se-Jin;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.433-439
    • /
    • 2017
  • Urban railway tunnels are polluted by resuspension of deposited bottom dust or newly generated wear dust. A hybrid type dust collector consisting of a baffle and an electrostatic precipitator was developed to remove these types of airborne dust when trains are running in the tunnel. Since dust collection efficiency of the hybrid dust collector is inversely proportional to the airflow rate, the relationship between airflow rate and dust collection efficiency was experimentally investigated for two baffle models. Collection efficiencies for dust larger than $0.5{\mu}m$ for the hybrid dust collector model A1, operated at 3.4 m/s, were greater than 30%; those for the hybrid dust collector model A2, operated at 4.7 m/s, were higher than 20%. When the applied voltage was 13 kV, the amounts of $PM_{10}$ collected with model A1 and model A2 dust collectors were estimated at $253{\mu}g$ and $242{\mu}g$ per hour, respectively.

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

Performance Enhancement of Flue Gas Desulfurization System with Structural Constraints in 500 MW Coal Fired Power Plants (구조적 제약조건을 갖는 500 MW 석탄화력발전소 탈황설비의 성능개선)

  • Kim, Jong-Sung;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.30-35
    • /
    • 2019
  • To meet both increasing social demand for reduction of fine dust and the strengthened air pollutant emission standards, this paper indicated performance enhancement of FGD with structural constraints in 500 MW coal fired thermal power plant's. Through modifying internal facilities for flue gases to make swirl in the absorption tower, it made turbulence and increased the efficiency of material transfer, the reaction area and time with the limestone slurry. Therefore, it could reduce dust and enhance the performance of collecting the SO2. As a result, desulfurization efficiency was improved from 91.61% to 98.43% and dust removal efficiency was improved from 77.4% to 87.08%. Emission density is 7.85 ppm of SO2 and 4.67 mg/㎥ of dust. This is a level that satisfies emission limit of 25 ppm of SO2 and 5 mg/㎥ of dust which are the air pollutant emission standards of 2023. The performance enhancement method of this study is expected to be effectively applied to other coal-fired power plants with similar constraints.

Effect of LED Light Quality Treatment on the Functional Optimization of Foliage Plant (LED 광질이 관엽식물의 기능성 최적화에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Ann, Seoung-Won;Choi, Won-Chun;Lee, Myung-Won;Lee, Kook-Han;Liu, Xiao-Ming
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.633-640
    • /
    • 2012
  • White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in $Spathiphyllum$ and lowest in $Dieffenbachia$. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.

Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit (공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구)

  • Kim, Se-Young;Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jin-Ho;Kim, Myung-Joon;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.

Development and Evaluation of Coal-dust Water Flocculant using Chitosan (키토산을 이용한 탄진수 응집제 개발 및 평가)

  • Hong, Woong-Gil;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.139-142
    • /
    • 2021
  • Coal-fired power plants use coal as the main raw material, and when a coal is moved, a dust generation and spontaneous ignition of coal occur. To prevent this, water is sprayed. As a result, wastewater called "coal-dust water" flows out of coal dust and water mixed together, causing environmental pollution. In this study, in order to solve this problem, we developed a natural flocculant that can purify water by aggregating fine dust using chitosan and tried to prove its applicability. It was found that the optimum flocculation concentration was 4 ppm by adding various concentrations of flocculant to the coal-dust water, and it was confirmed that the developed material had very good coal-dust flocculation capacity through permeability and coal-dust removal efficiency. In addition, the cytotoxicity of the flocculant was evaluated through the MTT assay and it was found that there is no toxicity at all. We believe that the flocculant developed in this study can effectively adsorb coal-dust without affecting human and natural ecosystems.

Effect of Biofilter on Reducing Malodor Emission (악취 발산감소를 위한 필터의 이용 효과)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF

A Study on Filtration Performance Test with Electrostatically Enhanced Fabric Filter (정전형여과집진방식에서 여과특성에 관한 연구)

  • 천중국;박출재;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 1995
  • This study has been carried out to investigate the filteration performance of Electrostatically Stimulated Fabric Filter(ESFF) at high temperature condition. The electric field was maintained parallel to the fabric surface. The benefits of ESFF are lower residual pressure drop, improvement of fine particle removal efficiency and increasing reduced rate of pressure drop during a filteration cycle, stable operation at higher filtering velocities. According to the variance of filtering velocities and dust loadings, the results are summarized as follows; By imposing an electric field on the filter, the reduced rate of pressure drop was 7.sim.18% at room temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Under the electric field around the filter, the reduced rate of pressure drop was 10.sim.35% at high temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Most of all, at high temperature, the value of reduced rate of pressure drop was resulted to 25%. Also the collecting efficiency was shown clearly improved. By the SEM photo analysis, the number of penetrated particles at the Conventional Fabric Filter was approximately two times that of Electrostatically Stimulated Fabric Filter.

  • PDF

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.