• Title/Summary/Keyword: Dust removal efficiency

Search Result 95, Processing Time 0.042 seconds

Dust Removal Efficiency and Operation Characteristics of Metal Filters for Coal Gasification Fines and Standard Dust Sample (금속필터를 사용한 석탄가스화 분진 및 표준 분진의 집진 효율과 운전특성)

  • Yun, Yongseung;Chung, Seok Woo;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Demand for improving dust removal efficiency in coal power plants and the dust removal requirement to the level of capturing fine particulate matter and ultrafine particles have been increasing. While bag filter and electrostatic precipitator (ESP) are typically used for dust removal in the processes operating at atmospheric pressure, metal filters or ceramic filters are employed for dust which is produced at high temperature/pressure system as in coal gasification. For dust removal at the high temperature/pressure conditions, two metal filters of five compressed/sintered layers were manufactured and applied to analyze the dust removal characteristics. Manufactured metal filters exhibited more than 99% dust removal efficiency on coal gasification fine particulates in mass basis. To evaluate the fine particulate removal efficiency of less than $2.5{\mu}m$, JIS standard fine sample was used and confirmed the removal efficiencies of 97% and 70~82% on the fine particulates of $1{\sim}2.5{\mu}m$ size range. For the size range of less than $1{\mu}m$, dust removal efficiency of manufactured metal filters significantly degraded with smaller particle size. Improving methods are proposed to overcome the limitations in applying to fine dust of less than $1{\mu}m$.

A Study on the Phenomena of Dust Removal by the Layout Changes in the Turbulent Type Clean Room (난류형 클린룸내의 Layout 변화에 따른 분진제거 특성에 관한 연구)

  • Kim, Yeon-Hui
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.41
    • /
    • pp.80-87
    • /
    • 2007
  • The purpose of this paper is to investigate the removal efficiency of fine dusts as the configuration condition of machinery and equipments in Clean Room and to analyze the flowing behaviors of fine dusts as the layout of Clean Room. The layout of the Clean Room was classified into side layout type, 2 center line type and center concentration type layout, and the flow rates used in this research were 0.22m/s, 0.44m/s and0.80m/s. Dust removal efficiency as layout change was decreased 37% for side layout type, 31% for 2 centerline type and 20% for center concentration type layout at the flow rate of 0.22m/s, compared with the state without machinery and equipments in Clean Room. The efficiency was decreased 42% for side layout type,22% for 2 center line type and 8% for center concentration type layout at the flow rate of 0.44m/s, and decreased 20% for side layout type, 18% for 2 center line type and 10% for center concentration type layout at the flow rate of 0.80m/s. According to the result of dust removal behavior, $0.3\mum$, $1\mum$and $3\mum$dust except for $5\mum$showed the higher change of the behavior in side layout type than in center concentration type layout due to the change of air flow. It was confirmed that removal behavior depends on the layout of machinery and equipments as the dust size decreases.

  • PDF

How to Evaluate the Combined Dust Removal Efficiency of Fine Dust in the Dust Collector (집진기 미세먼지의 복합제진효율 평가방법)

  • Kang, Il-Seo;Lee, Young-su;Kim, Dong-Hyun
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.339-344
    • /
    • 2022
  • It is about how much fine dust can be efficiently removed with respect to the electric dust collector used in factories and large facilities. The results of evaluating the fine dust removal efficiency are as follows. At 10,000 V, Efficiency method I showed 68.1 %, and Efficiency method II was 58.6 %, which was lower than that of Efficiency method I. At 5,000 V, Efficiency method I showed 57.6%, and Efficiency method II showed 51.6%, which was lower than Efficiency method I. At 2,500 V, Efficiency method I showed 50.3%, and Efficiency method II showed 24.4%, which was lower than Efficiency method I. In case of Efficiency method I, it is the efficiency calculated by using the dust concentration before and after passing through the filter. Efficiency method II calculated Efficiency method II to measure the efficiency a little more accurately in the environment where the air after the filter and the polluted air are mixed. Efficiency method II showed lower efficiency than Efficiency method I. As a result of the electrostatic precipitator test, the dust collecting performance was highest at 10,000 V, followed by 5,000 V and 2,500 V in that order.

Removal of Dust in Positive and Negative Plates of Electrode Coated with Activated Carbon (활성탄으로 코팅된 전극에서 분진의 제거)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Nam, Sang Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.830-837
    • /
    • 2013
  • The purposes of this research are to know the dust removal efficiency according to the changes of gab between positive and negative plates in dust removal chamber. The experiments for dust removal efficiencies were conducted with changing the electrode-plate gab from 2 cm to 1 cm while the electric pressure, influent flow, and linear velocity were kept 5 kV, 80 L/min, and 6 cm/sec, respectively. From the experimental results of the electrode-plate gab of 2 cm, dust removal efficiencies were decreased to as low as about 50%. Attached dust on the surface of electrodes was released due to a reverse electric charge of dust. From the experimental results of the electrode-plate gab of 1 cm, dust removal efficiencies were increased to as high as about 80% due to the dust attachment velocity to the electrodes to be far more fast than influent linear velocity. Finally, to protect a attached dust from occurring a reverse electric charge it is needed to install the non-conductor between positive and negative electrodes and also to remove air humidity.

A Study on the Phenomena of Dust Removal by the Layout Changes in the Turbulent Type Clean Room (난류형 클린룸내의 Layout 변화에 따른 분진제거 특성에 관한 연구)

  • Kim, Yeon-Hee;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.46-52
    • /
    • 2006
  • The purpose of this paper is to investigate the removal efficiency of fine dusts as the configuration condition of machinery and equipments in Clean Room and to analyze the flowing behaviors of fine dusts as the layout of Clean Room. The layout of the Clean Room was classified into side layout type, 2 center line type and center concentration type layout, and the flow rates used in this research were 0.22m/s, 0.44m/s and 0.80m/s. Dust removal efficiency as layout change was decreased 37% for side layout type, 31% for 2 center line type and 20% for center concentration type layout at the flow rate of 0.22m/s, compared with the state without machinery and equipments in Clean Room. The efficiency was decreased 42% for side layout type, 22% for 2 center line type and 8% for center concentration type layout at the flow rate of 0.44m/s, and decreased 20% for side layout type, 18% for 2 center line type and 10% for center concentration type layout at the flow rate of 0.80m/s. According to the result of dust removal behavior, $0.3{\mu}m,\;1{\mu}m\;and\;3{\mu}m$ dust except for $5{\mu}m$ showed the higher change of the behavior in side layout type than in center concentration type layout due to the change of air flow. It was confirmed that removal behavior depends on the layout of machinery and equipments as the dust size decreases.

System Development of Removing Dust and Odor from Manufacturing Process of FRP Products (FRP제품 가공시 발생하는 분진 및 악취 제거 시스템 개발)

  • Yun, Huy Kwan;Kim, Jae Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2009
  • When fiber reinforced plastics (FRP) products are manufactured, dust and odor materials are inevitably generated in a workplace. To improve the bad condition of the workshop, we developed the Hybrid Bag Filter attached activated carbon fiber (ACF) and installed the system at two companies producing FRP goods. In order to raise the efficiency of dust collection, we set the ducts both on the ceiling and at the bottom of the wall and according to the circumstances of the workshop's space, moving dust collector also adopted as a different type of flexible duct. Pulse Jet Type Bag Filter is also equipped to operate the system more effectively, for the improved fine environment because of high dust removal efficiency. Finally, we investigated the removal tendency of the dust and odor when operating the System of Hybrid Bag Filter.

A Study on Fine Particle Removal of ESP according to $(NH_4)_2SO_4$ Injection Rate (황산암모늄 주입에 따른 전기집진기(ESP)에서의 미세분진 제거)

  • 서정민
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.505-510
    • /
    • 1998
  • This study has been carried out to investigate Electrostatic Precipitator's(ESP) performance enhancement and removal efficiency of fine particle according to (NH4)2SO4injection rate. The following conclusions are derived from the these test results : 1) For plant condition cases, according to the variation of concentration agent [(NH4)2SO4]-10ppm, when inlet dust loading was 2g/m2. And when Inlet dust loading was 3g/m", that was increased to 98 19% 99.16% 99.23%, 99.58%, 2) It Is seen from thins experiments that the increasing 30ppm concentration of (NH4)2SO4 increase the collection efficiency and fine particle omission control.

  • PDF

Development of Pilot-Scale Scrubber for Simultaneous Removal of $SO_2/NO$

  • Jung, Seung-Ho;Jeong, Gwi-Taek;Lee, Gwang-Yeon;Park, Don-Hee;Cha, Jin-Myeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.468-474
    • /
    • 2005
  • SOx and NOx are known major precursors of acid rain and thus the abatement of their emissions is a major target in air pollution control. To obtain basic data on the removal process of simultaneous $SO_2/NO$, the optimal reaction condition and the composition of reaction solution for simultaneous removal of $SO_2/NO$, ware investigated using a bubble column reactor. Pilot scrubber was consisted of scrubber, filter and control box. Dust removal rate was 83, 92, and 97% with catalyst flux of 0.5, 0.8, 1.5 L/min, respectively Average dust removal efficiency with a kind of nozzle was about 94 and 90% in STS FF6.5 (5/8in.) and 14 of P.P W(1.0in.), respectively Dust and $SO_2$ were removed more than 98-96% regardless of reactor number. In the case of NO gas, removal yield of 83.3% was achieved after 48 hours in 1 stage, also removal yield of 95.7% was reached in 2 stages. In tile case of application of STS (5/8 in.) and P.P (1.0 in.) as used fill packing, removal efficiency was reached higher than 98% without related to of kind of fill packing.

  • PDF

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.

Electric Collection Filter for Ultrafine Dust Removal (초미세먼지 제거를 위한 전기집진 필터에 관한 연구)

  • Kim, Yong Sun;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.40-45
    • /
    • 2022
  • In recent years, indoor air pollution has become a crucial environmental problem. Hence, the purification of indoor air is an important issue. Typical physical filters show relatively high dust collection efficiency at a dust particle size of more than 5.0 ㎛ but extremely low efficiency at an ultrafine size of less than 2.5 ㎛. In this study, an electric field filter was proposed to capture ultrafine dust with a size of less than 5.0 ㎛. Simulation results showed that the electric field filter effectively removed ultrafine dust. In addition, sufficient dust collection efficiency was obtained even with a simple plate-shaped filter without bending the Chevron filter.