• Title/Summary/Keyword: Durability testing

Search Result 303, Processing Time 0.017 seconds

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

A Study on Improving the Performance of Shale for Application of Aggregate for Concrete (콘크리트용 골재활용을 위한 셰일 골재의 성능개선에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5915-5922
    • /
    • 2013
  • In this study, with the aim of improving the performance of shale to allow for its use as coarse aggregate for concrete, we coated shale aggregates with water repellents and polymers and evaluated their physical properties such as density, water absorption rate, wear rate, and stability depending on the coating method. In addition, the effects of the performance improvement were evaluated by assessing the properties of fresh concrete produced by varying the shale substitution ratio, as well as the compressive strength, flexural strength, and freeze-thaw resistance according to curing ages. The test results revealed that the absolute dry densities of all coated aggregates satisfied the standard density for coarse aggregates for concrete(>$2.50g/cm^3$),and the absorption rate of the shale aggregate coated with water repellent decreased by about 50% compared with that of uncoated shale. The wear rate of the polymer-coated shale decreased by up to 13.0% compared with that of uncoated shale. All coated aggregates satisfied the stability standard for coarse aggregates for concrete(${\leq}12$). The water repellent-induced performance improvement decreased the shale aggregates' slump by about 20~30mm compared with that of the uncoated shale aggregates, and the air content of the repellent-coated shale aggregate increased by up to 0.9% compared with that of the uncoated shale aggregate. The compressive strength of the polymer-coated shale aggregates at a curing age of 28 days was RS(F) 95.7% and BS(F) 90.0%, and the flexural strength was RS(F) 98.0 % and BS(F) 92.0% of the corresponding values of concretes produced using plain aggregates. Furthermore, the concrete using polymer-coated shale aggregates showed a dynamic modulus of elasticity of RS(F) 91% and BS(F) 88% after 300 freeze-thaw cycles, thus demonstrating improved freeze-thaw durability.

Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

  • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2009
  • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

  • PDF