• Title/Summary/Keyword: Durability of permeability

Search Result 339, Processing Time 0.021 seconds

Evaluation of the Performance of One-way Drainage Filter by Field Test (시험시공을 통한 일방향 배수필터의 성능 평가)

  • Seo, Dong-Uk;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.47-53
    • /
    • 2012
  • It is needed to install a one-way drainage filter to prevent a seepage from lake or river outside of embankment and to promote a drainage from a flood inside of embankment when dikes such as lake dike, river dike, etc are constructed. However, the results of research for one-way drainage filter are insufficient. Therefore, through the field test of one-way drainage filter, this study checked a function of one-way drainage filter with a test of performance. As a result of field test, water flow in dike was blocked in the interception direction of the section that one-way drainage filter was installed, but water passed to the flow allowance direction of the section. Therefore we confirmed the function of one-way drainage filter. Seepage quantity in the flow allowance direction of the one-way drainage filter section was low as 74.6~80.5 % than that in the section without installation of filter because of a reduction effect of seepage with filter. And seepage quantity of field test was low as 64.3~90.0 % than that in results of seepage analysis because the coefficient of permeability of embankment in field is different from the results of laboratory test. In the future, more study will be needed to solve several problems which are related to fix the filter on slide, durability of filter, etc.

Review study towards effect of Silica Fume on the fresh and hardened properties of concrete

  • Imam, Ashhad;Kumar, Vikash;Srivastava, Vikas
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.145-157
    • /
    • 2018
  • This paper presents a review on the use of Silica Fume (SF) as a mineral admixture in the concrete. Distinctive outcome from several researches have been demonstrated here, particularly emphasizing on the fresh and hardened properties of concrete when blended with Silica Fume (Micro-silica or Nano-silica). The results showed a substantial enhancement in the mechanical properties of concrete when replaced with SF. The review also presented a brief idea of percentage replacement of SF in case of normal and high-strength concrete. A decreasing trend in workability (slump value) has been identified when there is a increase in percentage replacement of SF. It can be concluded that the optimize percentage of replacement with SF lies in the range of 8-10% particularly for compressive strength. However the variation of blending goes up to 12-15% in case of split tensile and flexure strength of concrete. The study also demonstrates the effect of silica fume on durability parameters like water absorption, permeability, sulphate attack and chloride attack.

A Feasibility Study on the Formation of the Permeable Reactive Biobarier treated with Beijerinckia indica

  • Lim, Dong-Hee;Lee, Jai-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.75-78
    • /
    • 2001
  • Authors evaluated the feasibility of a permeable reactive biobarrier (PRB) treated with biofilm formed by Beijerinckia indica (B.indica). This study focused on evaluating two potentials of B.indica for the requirements of PRB: reducing the hydraulic conductivity and degrading the polycyclic aromatic hydrocarbons (PAHs). The hydraulic conductivity was estimated by rigid wall column test and finally the values were converted to the values of intrinsic permeability. The nutrient solution was passed through the biobarrier column to activate the bacterium and then leachate was in turn carried into the column to evaluate the durability of the biobarrier. Phenanthrene was selected as a representative substance of PAHs. The ability of degrading phenanthrene by B.indica was evaluated by two-phase partitioning bioreactor after estimating the possibility with two pretests: observing the colony formation and the optical density on glucose-free medium containing phenanthrene. With the results, B.indica produced large amount of strongly adhesive exopolysaccharides (EPS) and reduced several orders of magnitude of the hydraulic conductivity after 2 weeks of cultivation. Furthermore, about 1000mg/1 of phenanthrene could be degraded by B.indica in the two-phase partitioning bioreactor. In conclusion, the application of the bacterium, B.indica, was found to have a potential role of a PRB to retain and remove contaminants in porous media.

  • PDF

Studies on the Durable Properties of Fiber Reinforced Porous Concrete Using Polymer (강섬유보강 폴리머 포러스콘크리트의 내구특성에 관한 연구)

  • Kim, Bong-Kyun;Park, Seong-Bum;Seo, Dae-Seuk;Lee, Byung-Jae;Kim, Jung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.565-568
    • /
    • 2006
  • This study evaluates the physical mchanical properties, durability of porous concrete for pavement according to content of polymer and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6Vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The case when 0.6Vol.% of steel fiber and 10Wt.% of polymer are used at the same time shows that the loss rate of mass by Cantabro test became 36.7% better and freeze-thaw resistance became 33% better.

  • PDF

Improving Impact Resistance of Polymer Concrete Using CNTs

  • Daghash, Sherif M.;Soliman, Eslam M.;Kandil, Usama F.;Taha, Mahmoud M. Reda
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.539-553
    • /
    • 2016
  • Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder (철계 연자성 분말용 하이브리드 절연 코팅막 개발)

  • Kim, Jungjoon;Kim, Sungyeom;Kim, Youngkyun;Jang, Taesuk;Kim, Hwi-jun;Kim, Youngjin;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

Durability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 내구특성)

  • Yun, Kyong-Ku;Jung, Won-Kyong;Choi, Sang-Reung;Kim, Dong-Ho;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.1-8
    • /
    • 2002
  • Latex modified concrete(LMC) became to be applied as a new material for newly constructed bridge deck overlays in Korea due to its excellent bond strength, flexural strength and impermeability against water and chloride. However, it could not be adopted at repair job site because of its long curing time required. Thus, a research on latex modified concrete with rapid-setting cement(RSLMC) is necessary if it could develope the sufficient strength for early opening to traffic. This study focused on the durability of latex modified concrete with rapid-setting cement mainly on water permeable resistance and freeze-thaw resistance. The main experimental variables were latex contents(0, 5, 10, 15 and 20%) and antifoamer contents (0, 1.6, 3.2, 4.8 and 6.4%). Test results show that the permeability of RSLMC is very low indicating below 100 coulombs at 15% of latex contents at all antifoamer contents. The freeze-thaw resistance of RSLMC maintains above 90% of relative dynamic modulus at 3.2% of antifoamer content until 300 freezing-thawing cycles.

  • PDF

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

  • Hwang, Byung Chan;Oh, So Hyeong;Lee, Moo Seok;Lee, Dong Hoon;Park, Kwon Pil
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2290-2295
    • /
    • 2018
  • An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

Creep Characteristics of Weathered Soils and Application of Singh-Mitchell's Creep Formula (풍화토의 크리프 특성 및 Singh-Mitchell 크리프 방정식 적용성 검토)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Jun;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.69-76
    • /
    • 2009
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In Korea, weathered soil is abundant and occupies around one-third of the country. Weathered soil is visually described as a sandy or gravelley soil, but the behavior is quite different from the behavior of usual sand and gravel. In particular, the permeability of weathered soil is similar to sand, but the durability of settlement is similar to clay. Therefore analysis of time-dependent behavior of weathered soil is very important. In this study, Creep tests with weathered soils were carried out under constant principal stress differences of various stress levels which were experimentally obtained by triaxial compression test. The results of these tests showed the creep behavior for which the deformation increased with time, and the results are consistent with phenomenological model by creep equation of Singh-Mitchell.