• Title/Summary/Keyword: Durability Performance

Search Result 1,782, Processing Time 0.031 seconds

Pore Structure Modification and Characterization of Porous Alumina Filter with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 알루미나 필터의 기공구조 개질 및 특성 평가)

  • 박원순;최두진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.518-527
    • /
    • 2004
  • In this study, SiC whiskers were grown in porous alumina substrate in order to enhance the filtering efficiency, performance, and durability by controlling pore morphology. This experiment was performed by Chemical Vapor Infiltration (CVI) in order to obtain the whiskers on the inside of pores as well as on the surface of porous the A1$_2$O$_3$ substrate. The deposition behavior was changed remarkably with the deposition position, temperature, and input gas ratio. First, the mean diameter of whisker was decreased as the position of observation moved into the inside of substrate due to the reactant gas depletion effect'. Second, the deposition temperature caused the changes of the deposition type such as debris, whiskers and films and the change in morphology affect the various properties. When SiC films were deposited. the gas permeability and the specific surface area decreased. However, the whisker showed the opposite result. The whiskers increase not only the specific surface area and minimizing pressure drop but also mechanical strength. Therefore it is expected that the porous alumina body which deposited the SiC whisker is the promising material for the filter trapping the particles.

Effect of Clamping Pressure on Surface Properties of Gas Diffusion Layer in PEFCs (체결압이 고분자연료전지 기체확산층의 표면성질에 미치는 영향)

  • Ahn, Eun-Jin;Park, Gu-Gon;Yoon, Young-Gi;Park, Jin-Soo;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.306-310
    • /
    • 2007
  • Characteristics of GDL (Gas Diffusion Layer) mainly determine the gas diffusion and water removal in a cell, thereby changing the performance and affecting durability of PEFC. To optimize the water management and understand the two phase flow in a GDL, it is important to study the behaviors of GDL micro structure under the real operating condition. In the clamped condition of cell, the GDL beneath the rib is more compressed than beneath the channel. Many researches on physical, electrochemical, mechanical behaviors of gas diffusion layer has been conducted. However, changes in surface properties under clamped condition have rarely studied. In present study, the morphology of broken connections of carbon fibers and detachment of PTFE coatings on the fibers were shown from the microscopic observations. In addition, changes in wetting properties of GDL by compression were investigated by using XPS and liquid uptake methods. The hydrophobic characteristics of GDL surface beneath the rib of the flow field plate are changed due to the deformation of micro structure.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review (콘크리트 및 복합재료용 멀티스케일 가상 시험기계에 관한 소고)

  • Haile, Bezawit F.;Park, S.M.;Yang, B.J.;Lee, H.K.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.173-181
    • /
    • 2018
  • Recently composite materials have dominated most engineering fields, owing to their better performance, increased durability and flexibility to be customized and designed for a specific required property. This has given them unprecedented superiority over conventional materials. With the help of the ever increasing computational capabilities of computers, researchers have been trying to develop accurate material models for the complex and integrated properties of these composites. This has led to advances in virtual testing of composite materials as a supplement or a possible replacement of laboratory experiments to predict the properties and responses of composite materials and structures. This paper presents a review on the complex multi-scale modelling framework of the virtual testing machines, which involve computational mechanics at various length-scales starting with nano-mechanics and ending in structure level computational mechanics, with a homogenization technique used to link the different length scales. In addition, the paper presents the features of some of the biggest integrated virtual testing machines developed for study of concrete, including a multiscale modeling scheme for the simulation of the constitutive properties of nanocomposites. Finally, the current challenges and future development potentials for virtual test machines are discussed.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Development of Concrete Quality Inspection and Document Management System Using Mobile and Web Technologies (모바일 기술 및 웹을 활용한 콘크리트 품질시험 및 문서관리 시스템 개발)

  • Kim, Young-Suk;Lee, Jae-Kwon;Jung, Un-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.193-205
    • /
    • 2008
  • Quality is an important keyword representing the corporate competitiveness and image in today' s construction industry. Especially in concrete construction, any problems or defects in fresh concrete can significantly degrade the entire quality and performance of the facility built. Thus, adequate quality inspection and testing must be exercised over the fresh concrete, if concrete with the required strength, durability and appearance is to be obtained. The testing of concrete delivered to the construction job site involves testing of fresh concrete and performing strength tests on hardened concrete. The principal tests conducted on fresh concrete include the slump test and tests for air and salt content. The temperature of fresh concrete should be checked out hot or cold weather concreting. The 7-day and 28-day strength of hardened concrete are also determined by compression tests on usually cylinder samples. However, it is very complex and time-consuming process requiring a lot of efforts to document those on-site concrete testing results and to accumulate their historical data. The primary objective of this study is to suggest a unique PDA and web-based system which enables an on-site quality manager to effectively conduct the concrete inspection and testing, automatically document and accumulate the collected historical data, and promptly obtain the approval from supervisors. Finally, it is anticipated that the effective use of the proposed PDA and web-based system would be able to improve reliability of the concrete quality inspection and testing data as well as significantly reduce the approval process.

New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar (이형 GFRP Rebar로 보강된 보의 유효단면이차모멘트 산정식 제안)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Lim, Jun-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2008
  • To fundamentally solve the problem of deterioration of concrete structures, it has been researched that the high durable concrete structure reinforced with the FRP rebar can be one of major solution to the newly-developed concrete structure. FRP rebar has lots of advantages such as non-corrosive, high performance and light weight against the conventional steel rebar. Among these kinds of FRP rebars, GFRP rebar has usually been considered as the best reinforcement because of its economic point of view. Even though the material capacity of the GFRP rebar was already investigated, there are some problems such as low modulus of elastic that will be cause for degrade of the serviceability of flexural concrete member reinforced with the GFRP rebar. Thus, the deflection characteristics of the GFRP rebar reinforced concrete structure should be considered then investigated. In this study, ACI 440 guideline (2003), ISIS Canada Design Manual (2001) and Toutanji et al. (2000) was considered for predicting the moment of inertia of the concrete beam reinforced with the GFRP rebar. And it was also evaluated that load-deflection relationship had a good accordance with the test and analysis result. In the result of this study, it could be estimated that the load-deflection relationship using the suggested equation of moment of inertia in this study indicated better accordance with the test result than that of the others until failure.

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.