• Title/Summary/Keyword: Durability Assessment

Search Result 216, Processing Time 0.03 seconds

A Study on the Change of Physical Capability of Waterproofing Layer after the Application of Static Load and Moving Load to a Non-Exposed Type Waterproofing Layer (비노출 방수층에 작용하는 정하중과 동하중 작용 후의 방수층 물성변화에 관한 연구)

  • Seon, Yun-Suk;Kim, Jin-Seong;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.141-145
    • /
    • 2007
  • The part in the structure that is most affected by changes of external temperature is the protective concrete layer that protects a waterproofing layer. Also, the waterproofing layer that is situated under or on the back of such a protective concrete layer is affected by temperature and the behavior of the protective concrete layer under the condition of consolidation or close adhesion. In particular, in many cases, the damage is serious mainly around the projection (such as a parapet), crack, and joint (expansion joint). However, there is no proper way of examining again the non-exposed waterproofing layer once it has been constructed. Therefore, there is an assessment only on the physical property of materials and the capability of the layer in construction, and there is no actual assessment in consideration of its environmental condition or the condition of the use of buildings after construction. Therefore, in order to create more pleasant buildings and to enhance the durability of structures, this study conducts research into the change of capability of non-exposed waterproofing material after the application of a static load and moving load on the waterproofing layer situated under or on the back of protective concrete.

  • PDF

Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement (보강용 지오신세틱스의 가속 인장 크리프 시험방법)

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

Analysis on Results evaluated by "Housing Performance Grading System" in Korea (주택성능등급 인정 사례의 부문별 평가 결과 분석)

  • Lee, Sung Ok
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.55-66
    • /
    • 2010
  • The government is enacted "Housing Performance Grading Indication System" from qualitative housing supply policy and performance of housing under the background of looking for new plan to secure good housing stock and housing performance. This system consists of 5 main performance section, 14 performance categories and 20 detailed performance items. 5 main performance parts are sound insulation related grading(Light-weight impact sound insulation, heavy-weight floor impact sound insulation, noise emission in bathroom, airborne sound insulation for wall between units), Long-life housing related grading(flexibility, remodeling & maintenance, durability), environment related grading(landscape, indoor air quality and ventilation, energy performance), Living environment related grading(common resident facilities such as playground and consideration for the socially underprivileged such as the aged), Fire fire prevention grading(fire fire prevention). The purpose of this research is to analyze characteristics and assessment results of 20 detailed performance items on "Housing Performance Grading Indication System" which was enforced 240 cases from Jan 9th, 2006 to Sep 30th, 2010. The analysis of approval condition of detailed performance items will be important comments for understanding the current domestic level and development of technology.

Investigation of a management framework for condition assessment of concrete structures based on reusable knowledge and inspection

  • Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.249-269
    • /
    • 2010
  • Managing and reusing knowledge in engineering and construction sectors can lead to greater competitive advantage, improved designs, and more effective management of constructed facilities. The use of Information Technology (IT) in design and construction can exploit strategic opportunities for new ways of integration, sharing and facilitating information and knowledge in any field of engineering. The integrating of separate areas of IT can be used to bring a group of experts and specialists in any field of engineering closer together by allowing them to communicate and exchange information and expertise that facilitate knowledge capture, sharing, and reuse. A lack of an advisory management system and a need to marshal all available data in a common format has indicated the need for an integrated engineering computing environment to investigate concrete repair problems. The research described in this paper is based upon an evaluation management system (EMS) which comprising a database management system (REPCON) alongside visualisation technologies and evaluation system (ECON) is developed to produce an innovative platform which will facilitate and encourage the development of knowledge in educational, evolution and evaluation modes of concrete repair. This allows us to create assessment procedures that will allow the current condition of the concrete structure and its components to be expressed numerically using a confidence level (CL) so as to take the best course of action in the repair and maintenance management. The explained rating system, which is related to structural integrity and serviceability of the structure, allows the confidence level to be determined by visual inspection and the descriptive information and pictures taken from an available REPair of CONcrete (REPCON) database.

Reliability testing equipment for SF_6 gas load break switch (가스절연부하개폐기의 신뢰성 평가장비)

  • Heo J.C.;Park S.J.;Kang Y.S.;Koh H.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.560-562
    • /
    • 2004
  • $SF_6$ gas has been increasingly used as the insulating and arc-suppressing medium in switchgears which are used as the protection devices of power system. Nowadays, most of power companies adopted the $SF_6$ gas-type load break switch for increasing the reliability of distribution network by its superior durability against external environmental condition, in substitution for air-type and oil-type switches. But, it is important to establish the general estimation process for the testing and estimation for long-term reliability Accordingly, the national standard(RS C0031) was made for the reliability assessment of $SF_6$ gas load break switch and the testing facilities were also set in KERI(Korea Electrotechlology Research Institute). This paper presents the requirements of RS C0031 for reliability assessment of $SF_6$ gas load break switch and synopsis of the accelerated life testing facilities for $SF_6$ gas load break switch.

  • PDF

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System (철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안)

  • Kim, Hyo-San;Park, Joon-Hyung;Kim, Myung-Ryule;Park, Kwang-Hwa;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF

Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments (다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.385-392
    • /
    • 2014
  • The isolators have been generally used to reduce a seismic force. If the isolators apply to the nuclear power plants(NPPs), the durability and capacity for the structures and equipments should be ensured during the life time. In this study, the long-term behavior of isolated NPPs was analyzed for ensuring the seismic safety. The properties of isolator due to the age-related degradation were analyzed. And the seismic behavior of isolated buildings was analyzed by considering the aging of rubber bearings in different temperature environments. According to the analysis results, the natural frequency of structures was increased with time. But the maximum acceleration and maximum displacement of isolated structures have not changed significantly. Although the damaged of structure did not occurred by aging of isolators, it was presented that the spectral acceleration at the target frequency of isolated structure increased with the temperature. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the temperature-dependancy of rubber material.