• Title/Summary/Keyword: Duplex qRT-PCR

Search Result 3, Processing Time 0.017 seconds

Development of a One-Step Duplex RT-PCR Method for the Simultaneous Detection of VP3/VP1 and VP1/P2B Regions of the Hepatitis A Virus

  • Kim, Mi-Ju;Lee, Shin-Young;Kim, Hyun-Joong;Lee, Jeong Su;Joo, In Sun;Kwak, Hyo Sun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1398-1403
    • /
    • 2016
  • The simultaneous detection and accurate identification of hepatitis A virus (HAV) is critical in food safety and epidemiological studies to prevent the spread of HAV outbreaks. Towards this goal, a one-step duplex reverse-transcription (RT)-PCR method was developed targeting the VP1/P2B and VP3/VP1 regions of the HAV genome for the qualitative detection of HAV. An HAV RT-qPCR standard curve was produced for the quantification of HAV RNA. The detection limit of the duplex RT-PCR method was 2.8 × 101 copies of HAV. The PCR products enabled HAV genotyping analysis through DNA sequencing, which can be applied for epidemiological investigations. The ability of this duplex RT-PCR method to detect HAV was evaluated with HAV-spiked samples of fresh lettuce, frozen strawberries, and oysters. The limit of detection of the one-step duplex RT-PCR for each food model was 9.4 × 102 copies/20 g fresh lettuce, 9.7 × 103 copies/20 g frozen strawberries, and 4.1 × 103 copies/1.5 g oysters. Use of a one-step duplex RT-PCR method has advantages such as shorter time, decreased cost, and decreased labor owing to the single amplification reaction instead of four amplifications necessary for nested RT-PCR.

Development of a New Duplex Real-Time Polymerase Chain Reaction Assay for Detection of Dicer in G. gallus

  • Ji, Xiaolin;Wang, Qi;Gao, Yulong;Wang, Yongqiang;Qin, Liting;Qi, Xiaole;Gao, Honglei;Wang, Xiaomei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.630-636
    • /
    • 2013
  • Recently, there has been a growing body of evidence showing that cellular microRNAs (miRNAs) are involved in virus-host interactions. Numerous studies have focused on analyses of the expression profiles of cellular miRNAs, but the expression patterns of Dicer, which is responsible for the generation of miRNAs, have only rarely been explored in Gallus gallus. We developed a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay for the relative quantification of the mRNAs of Dicer and ${\beta}$-actin in G. gallus. To apply this method, the expression of Dicer in avian cells after infection with avian leukosis virus subgroup J (ALV-J) was detected using our established duplex real-time RT-PCR. The duplex real-time RT-PCR assay is sufficiently sensitive, specific, accurate, reproducible, and cost-effective for the detection of Dicer in G. gallus. Furthermore, this study, for the first time, demonstrated that ALV-J can induce differential expression of Dicer mRNA in the ALV-J-infected cells.

Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics (Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석)

  • Kim, Hye Jeong;Kim, Taek Min;Kim, Hong Joong;Jung, Hun Soon;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.653-661
    • /
    • 2019
  • The first small interfering RNA (siRNA) therapeutics have recently been approved by the Food and Drug Administration in the U.S., and the demand for a new RNA therapeutics bioanalysis method-which is essential for pharmacokinetics, including the absorption, distribution, metabolism, and excretion of siRNA therapeutics-is rapidly increasing. The stem-loop real-time qPCR (RT-qPCR) assay is a useful molecular technique for the identification and quantification of small RNA (e.g., micro RNA and siRNA) and can be applied for the bioanalysis of siRNA therapeutics. When the anti-HPV E6/E7 siRNA therapeutic was used in preclinical trials, the established stem-loop RT-qPCR assay was validated. The limit of detection was sensitive up to 10 fM and the lower limit of quantification up to 100 fM. In fact, the reliability of the established test method was further validated in three intra assays. Here, the correlation coefficient of $R^2$>0.99, the slope of -3.10 ~ -3.40, and the recovery rate within ${\pm}20%$ of the siRNA standard curve confirm its excellent robustness. Finally, the circulation profiles of siRNAs were demonstrated in rat serum, and the pharmacokinetic properties of the anti-HPV E6/E7 siRNA therapeutic were characterized using a stem-loop RT-qPCR assay. Therefore, the stemloop RT-qPCR assay enables accurate, precise, and sensitive siRNA duplex quantification and is suitable for the quantification of small RNA therapeutics using small volumes of biological samples.