• Title/Summary/Keyword: Duncan's Hyperbolic Model

Search Result 2, Processing Time 0.018 seconds

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Approximate Analysis of Corrugated Steel Culverts (파형강판 암거의 근사해석)

  • Choi, Dong-Ho;Kim, Won-Cheul;Kim, Gi-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.15-27
    • /
    • 2001
  • This paper proposes the force equations(thrust, moment) of corrugated steel culverts through the finite element method. The conditions for maximum thrust and maximum moment are determined from the analysis of soil-structure interaction during the three construction stages, such as backfill to the crown, backfill to the soil cover, and live loads. The proposed form of thrust and moment equations are deduced from the analysis of behaviour and the application of Castigliano's second theorem for the semi-arch structure. Finally, the coefficients used in the proposed equations are determined from a large number of analysis for the various geometries and the soil-structure relative stiffness under the conditions of maximum thrust and maximum moment.

  • PDF