• Title/Summary/Keyword: Ductility improve

Search Result 253, Processing Time 0.036 seconds

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Strengthening Efficiency for the Various Corner Shapes of RC Member confined with Continuous Fiber Sheets (연속섬유 시트로 보강된 RC 부재의 모서리 형상에 따른 보강 효율에 관한 연구)

  • Ko, Hune-Bum;Lee, Jin-Seop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • Recently, fiber reinforced polymers(FRP) composite materials are used extensively in the rehabilitation of concrete structural members. A main application is to wrap beams and columns using the continuous fibers sheets to improve their strength and ductility. The corner chamfering affects significantly the performance of the continuous fibers sheets, and could lead to environmental problem with waste and dust. The main purpose of this paper is to verify the effect of corner conditions on the strength of the continuous fiber sheets, and to introduce new attached components which can avoid environmental problem. A total of 15 specimens were tested and carefully checked for three types of continuous fiber sheets(carbon, glass, and aramid) and three types of corner conditions(non-chamfering, chamfering, and device attaching). It is proved that the devices proposed in this research have some capabilities to use for RC member. But additional research will be needed for commercializing.

Multiple Polyamide Fiber Reinforced Shotcrete for Railway Tunnel Structure (철도 터널 구조물 시공을 위한 다발형 폴리아미드섬유 보강 숏크리트)

  • Jeon, Joong-Kyu;Chung, Jae-Min;Yoon, Ji-Hyun;Jeon, Chan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1214-1219
    • /
    • 2011
  • Fiber reinforced shotcrete began to be used in tunnel constructions because it facilitates and expedites the construction process, and improves reinforcement properties. As one of the most widely used forms of shotcrete used in tunneling, steel fiber reinforced shotcrete offers excellent strength and ductility and allows quick reinforcement. However, steel fibers tend to lump together in cement matrix, and low levels of water and acid resistance cause corrosion in steel fiber, resulting in cracks and delamination. In particular, rebound and backlash of steel fiber is significantly increased during steel fiber reinforced shotcrete construction, compromising the flexural toughness and quality of shotcrete. In order to resolve the problems associated with steel fiber reinforced shotcrete and improve the application, durability, and cost-effectiveness of shotcrete, this paper proposes methods for manufacturing and constructing tunnels with multiple polyamide fiber reinforced shotcrete. We performed experiments to evaluate the performance of the proposed shotcrete, and the experimental results indicate that the multiple polyamide fiber reinforced shotcrete proposed in this paper offers outstanding performance that meets various construction design criteria.

  • PDF

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.180-185
    • /
    • 2014
  • The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

IMPROVEMENT OF GAS TUNGSTEN ARC WELDABILITY FOR FERRlTIC STAINLESS STEELS

  • Cui Li;Jeong, Ho-shin;Park, Byung-Il;Kim, Sung-Kab
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.107-112
    • /
    • 2002
  • Ferritic stainless steels would be the most important alloys under the chloride environment. They are a cheaper alternative to austenitic stainless steels [1]. The present study is related to gas tungsten arc welding (GTAW) characteristics of Type 444 stainless steels. The heat of welding leads to grain coarsening in the HAZ and in the weld metal of ferritic stainless steels because they solidify directly from the liquid to the ferritc phase without any intermediate phase transformation. It is therefore recommended that these alloys be welded with a low heat input and at high welding speeds. Attempts to improve weldability were made by using of direct current straight polarity (DCSP) and pulsed current GTAW processes in this study. Measuring weld bead, grain size and Erichsen test were performed and the effects of heat input, pulse frequency on the weld metal and HAZ were studied. The main results were obtained as followings: decreasing heat input was effective to control the width of weld both in DCSP welding and in pulsed current welding; pulsed current welding was found to refine the grain size effectively and the finest grain size was found at the frequency of 150Hz in pulsed current welding; it was found that decreasing heat input also refine the HAZs effectively and the frequency had no different effect on HAZ at the same heat input; the ductility could be improved effectively in pulsed current welding.

  • PDF