• Title/Summary/Keyword: Ductility Index

Search Result 134, Processing Time 0.041 seconds

A Study on Properties of Composite Beams according to Length of Reinforcing Plate for Different Types of Structure (이질구조부 보강판의 길이에 따른 혼합구조보의 특성에 관한 연구)

  • 이승조;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.297-302
    • /
    • 2002
  • This paper investigated the properties of flexural behavior of composite beams (end-Reinforced concrete, center-Steel concrete) according to attaching length of main bars to flange, shear reinforcing length for different types of structure. In the preceding study, structural properties of composite beams were investigated according to shear span to depth ratio, attaching method of main bars and shear reinforcing method. Based on these results, a series of experiments was carried out according to attaching length of main bar & reinforcing length for different types of structure. Consequently, as attaching length of main bar and shear reinforcing length increased, composite beams represented higher strength, ductility index and stress mechanism distributed in connection zone of different types of structure.

  • PDF

On the Flexural Strengthening Effect of the CFS Strengthened RC Beam under Pre-Loading Condition (가력중 탄소섬유로 보강된 RC보의 휨보강 효과)

  • Song, Won-Young;Jang, Hee-Suk;Cha, Young-Soo;Lee, Hong-Ju;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.92-95
    • /
    • 2004
  • The flexural strengthening effect of the RC beam strengthened with CFS under pre-loading condition was studied here. The beams were additionally strengthened at the each end with U type wrapping using the same CFS. Main variables considered were number of CFS plies(1,2) and pre-loading values(30,50,$70\%$ of the yield load of the control beam). The flexural strengthening effect was investigated through comparing the yield load, ultimate load, and ductility index of the specimens.

  • PDF

Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers

  • Park, Jai-Woo;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.131-150
    • /
    • 2013
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section (SHS) strengthened with carbon fiber reinforced polymers (CFRP) sheets. 9 specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the CFRP sheet orientation. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 100 transversely. Also, stiffness and ductility index (DI) were compared between un-retrofitted specimens and retrofitted specimens. Finally, it was shown that the application of CFRP to slender sections delays local buckling and subsequently results in significant increases in elastic buckling stress. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

Investigation of the performance of externally collared RC short columns via aspect ratio

  • Dirikgil, Tamer;Dugenci, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • This paper presents the experimental study of nine pieces of reinforced concrete (RC) short columns. RC short columns were tested with cyclic loading with displacement control under the influence of constant axial load with load index of 0.2. Three columns within the tested nine columns are reference columns which have the details of the reinforcement given in the modern regulations and six of them are 150 mm and 100 mm externally collared columns. In addition to the parameter of the collar spacing, aspect ratio (as=2-1.5-1) is also considered as a parameter. The data obtained from experimental results have shown that externally collar contributes significantly to increasing the shear resistance of RC short columns and limiting the shear dominant behavior. It has been observed that the effectiveness of the externally collar increases with the decrease of the aspect ratio.

A Study on the Flexural Experment of Precast Culvert with Slag (슬래그 미분말을 혼입한 프리캐스트 암거의 휨실험에 관한 연구)

  • Tae, Ghi-Ho;Jeon, Jung-Khu;Jang, Suk-Woo;Koak, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.522-525
    • /
    • 2006
  • This study is intended to discuss the application of blast slag for concrete to improve the durability of precast concrete box culvert. The precast concrete box culverts with blast slag are tested to verify the effect of early strength. The results show that the initial cracking load and yielding load of the blast slag concrete members are increased when they are compared with those of the normal concrete. In the prototype precast concrete box culvert experiment, initial crack control effect and ductility index are increased. It can be concluded that the use of blast slag was improved the durability in precast concrete box culvert.

  • PDF

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.

Flexural Behavior of Slab Repaired and Rehabilitated with Strand and Polymer Mortar (강연선과 폴리머 모르터에 의해 보수ㆍ보강된 슬래브의 휨거동 특성)

  • 황정호;양동석;박선규;엄준식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1007-1012
    • /
    • 2003
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. This study focused on the flexural behavior of reinforced concrete slabs strengthened by PS strand and polymer mortar in the tension zone. The properties of slabs are 70×12㎝ rectangular and over a 220㎝ span. Test parameters in this experimental study were placing thickness, chipping, the number of strand, the kind of mortar. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated slabs.

  • PDF

Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete (LMC로 보강된 철근콘크리트 보의 파괴거동)

  • 김성환;정원경;김기헌;김동호;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings (단면현상에 따른 벽식구조 전단벽의 구조성능 평가)

  • 한상환;오영훈;오창학;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.

The Effect on the Extension Distances of Beam-Column Joint with High and Low Strength Concrete (고강도와 보통강도 콘크리트를 사용한 보-기둥 접합부의 내민길이에 따른 구조적 거동)

  • 이광수;안종문;문정일;박희민;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.90-94
    • /
    • 1992
  • ACI318-89 Recommened that when the specified compressive strength of concrete in a column is greater than 1.4 times that specified for a floor system, top surface of the column concrete shall extend 2ft (600mm) into the slab from the face of column to avoid unexpected brittle failure. The major variables are extension distance, compressive strength of concrete (f'c), shear confinement ratio(Vs), and loading types. The test results showed that the load capacity of the specimen subjected to monotonic loading had more than that of the specimen subjected to one way cyclic loadings. The failure models of specimens under cyclic loading were concentrated at 5∼20cm apart region from beam-column joint face. Ducility index(μf) are increased with increasing of shear confinement ratio. The specimen with 2ft extension distance shows more ductility than specimen with lft extension distance.

  • PDF