• Title/Summary/Keyword: Ductility Factor

Search Result 270, Processing Time 0.021 seconds

A simplified normalized cumulative hysteretic energy spectrum

  • Sun, Guohua;Gu, Qiang;Fang, Youzhen
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • For energy-based seismic design, a simplified normalized cumulative hysteretic energy spectrum proposed for obtaining hysteretic energy as energy demand is the main objective in this paper. The dimensionless parameter, ${\beta}_{Eh}$, is presented to express hysteretic energy indirectly. The ${\beta}_{Eh}$ spectrum is constructed directly through subtracting the hysteretic energy of single degree-of-freedom (SDOF) system energy equation. The simplified ${\beta}_{Eh}$ spectral formulation as well as pseudo-acceleration spectrum of modern seismic provisions is developed based on the regression analysis of the large number of seismic responses of SDOF system subjected to earthquake excitations, which considers the influence of earthquake event, soil type, damping ratio, and ductility factor. The relationship between PGV and PGA is established according to the statistical analysis relied on a total of 422 ground motion records. The combination of ${\beta}_{Eh}$ spectrum and PGV/PGA equation allows determining the cumulative hysteretic energy as a main aseismic design indicator.

Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier (원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구)

  • 한기훈;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

An experimental Study on Effect of Lateral Ties of High-Strength Concrete Columns (고강도 콘크리트 기둥에서 띠철근의 구속효과에 관한 실험적 연구)

  • 정봉호;곽노현;이영호;은희창;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.501-506
    • /
    • 1999
  • The purpose of this study is to experimentally investigate the strength and ductility of reinforced high strength concrete columns under uniaxial load and several test variables. To do this, we have conducted tests on thirteen 20$\times$20$\times$60cm specimens with 8 and 12 longitudinal steel bars subjected to monotonic uniaxial compression. The main variables considered in this test are the configuration of ties, the space the ties, the diameter of ties and yield strength of ties. The results indicate that the strength and the ductility of reinforced high strength concrete columns have been influenced on these variables except yield strength of ties. Judging from test results, real stress of ties at peak concrete stress is suitable variable than yield strength of ties for estimation of the strength gain factor(Ks).

  • PDF

An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading

  • Choi, Byong Jeong;Han, Hong Soo
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.519-534
    • /
    • 2009
  • This study intends to examine the characteristics of compressive behavior and conducts comparative analysis between normal compressive strength under existing equations (LRFD, ACI 318, EC 4) and experimental the maximum compressive strength from the compression experiment for the unstiffened steel plate-concrete structures. The six specimens were made to evaluate the constraining factor (${\xi}$) and width ratio (${\beta}$) effects subjected to the compressive monotonic loading. Based on this experiments, the following conclusions could be made: first, compressive behaviors of the specimens from the finite element analysis closely agreed with the ones from the actual experiments; second, the higher the width ratio (${\beta}$) was, the lower the ductility index (DI) was; and third, the test results showed the maximum compressive strength with a margin by 7% compared to the existing codes.

A Study of influence factors on the bridge seismic behavior (교량의 지진거동에 미치는 영향인자에 관한 연구)

  • Choi, Jong-Man;Kook, Seung-Kyu;Kim, Jun-Bum;Jung, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF

Comparative Evaluation of Nonlinear Seismic Responses of Bridge Structures Using Different Analysis Technique (해석방법에 따른 교량 구조물의 비선형지진응답 비교연구)

  • Kwon, Kyong-Il;Joe, Yang-Hee;Kim, Jae-Suk
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.396-404
    • /
    • 2005
  • Nonlinear responses of structures may be obtained through three different methods. They are time-history analysis techniques, response spectrum method, and R-factor method. The nonlinear response spectrum method is frequently used in the practice, because the time history analysis method is time-consuming and complicated. There are two different approaches in obtaining the nonlinear response spectrum, which results in "constant displacement ductility spectra" and "constant damage spectra", respectively. The nonlinear response spectra of the various time-histories had been computed and the results were comparatively evaluated in this study. The study results showed that the existing constant displacement ductility spectra can induce unconservative design especially for the structures on soft soil base. This unconservatism can be removed by using the newly proposed constant damage spectra.

  • PDF

Structural Integrity Evaluation of the Integral Reactor SMART under Pressurized Thermal Shock (가압열충격에 대한 일체형원자로 SMART의 구조건전성 평가)

  • Kim, Jong-Wook;Lee, Gyu-Mahn;Choi, Suhn;Park, Keun-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.441-446
    • /
    • 2001
  • In the integral type reactor, SMART, all the major components such as steam generators, pressurizer and pumps are located inside the single reactor pressure vessel. The objective of this study is to evaluate the structural integrity for RPV of SMART under the postulated pressurized thermal shock by applying the finite element analysis. Input data for the finite element analysis were generated using the commercial code I-DEAS, and the fracture mechanics analysis was performed using the ABAQUS. The crack configurations, the crack aspect ratio and the clad thickness were considered in the parametric study. The effects of these parameters on the reference nil-ductility transition temperature were also investigated.

  • PDF

Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading (기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan;Nah, Hwan-Sean;Kim, Sang-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.

An Examination of the Minimum Reinforcement Ratio for Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2017
  • The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code's value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code's value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.