• 제목/요약/키워드: Ductility Degradation

검색결과 166건 처리시간 0.022초

Factors Affecting Longitudinal Tensile Strength of SiC/Ti-Al-V Composites Manufactured by Plasma Spraying

  • Baik, Kyeong-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.514-515
    • /
    • 2006
  • In this study, multi-ply SiC fiber reinforced Ti-6Al-4V composites have been manufactured by plasma spraying and subsequent vacuum hot pressing. Two different sizes of Ti-6Al-4V feedstock powders were used for plasma spraying to form matrix. A considerable amount of oxygen was incorporated into as-sprayed Ti matrix during plasma spraying, and consequently caused matrix embrittlement. The use of coarse-sized feedstock powder reduced oxygen contamination, but tended to increase fiber spacing irregularity and fiber strength degradation. Longitudinal tensile strength and ductility of the composites were mainly affected by the matrix oxygen content.

  • PDF

고강도 재료를 사용한 외부 보-기둥-슬래브 접합부의 지진응답 (Seismic Response of Exterior Beam-Column-Slab connection using High-Strength Materials)

  • 장극관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.343-350
    • /
    • 1999
  • The purpose of this study is to compare the response of the high-strength concrete beam-column-slab subassembly with the response of a normal-strength concrete specimens. Four assemblies were designed 2/3 scale beam-column-slab joint(fc'=240kg/cm2 fc'=700kg/cm2) and tested to investigate seismic behaviour. From the test results 1) flexral cracks emerge to inside of bean deeply for high strength concrete member 2) the high-strength specimens represented stable hysteretic behaviour for the displacement ductility 5.5 but degradation in stiffness and strength and unstable hysteretic behaviors were observed owing to the brittleness of high-strength concrete beyond its range.

  • PDF

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Flexural behavior of reinforced recycled aggregates concrete beam after exposed to high temperatures

  • Longshou Qin;Xian Li;Ji Zhou;Ying Liang;Wangsheng Ou;Zongping Chen
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.201-210
    • /
    • 2023
  • This paper investigates the flexural behavior of reinforced recycled aggregates concrete (RRAC) beams after exposed to high temperatures. The experimental results from 17 specimens were present and compared with temperatures, recycled coarse aggregate (RCA) replacement percentages, and concrete strength as variables. It was found that the high temperature would not cause an observable change in the failure pattern. However, high temperature can significantly reduce the stiffness and ductility, and accelerate the damage degradation of specimens. After exposure to 600℃, the ultimate bearing capacity of the specimens decreased by 20%-30% The mechanical properties of RRAC beams after high temperatures were barely impacted by the replacement percentages. Increasing the concrete strength of RCA could effectively improve the bearing capacity and peak deflection of RRAC beams after exposed to high temperatures. Furthermore, the calculation method of the bending bearing capacity and deflection of RRAC beams was also discussed.

강판 보강 집성재 보의 휨성능 평가 연구 (Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams)

  • 박금성;이상섭;곽명근
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Experimental study of failure mechanisms in elliptic-braced steel frame

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas;Beheshti-Aval, S. Bahram
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.175-191
    • /
    • 2020
  • In this article, for the first time, the seismic behavior of elliptic-braced moment resisting frame (ELBRF) is assessed through a laboratory program and numerical analyses of FEM specifically focused on the development of global- and local-type failure mechanisms. The ELBRF as a new lateral braced system, when installed in the middle bay of the frames in the facade of a building, not only causes no problem to the opening space of the facade, but also improves the structural behavior. Quantitative and qualitative investigations were pursued to find out how elliptic braces would affect the failure mechanism of ELBRF structures exposed to seismic action as a nonlinear process. To this aim, an experimental test of a ½ scale single-story single-bay ELBRF specimen under cyclic quasi-static loading was run and the results were compared with those for X-bracing, knee-bracing, K-bracing, and diamond-bracing systems in a story base model. Nonlinear FEM analyses were carried out to evaluate failure mechanism, yield order of components, distribution of plasticity, degradation of structural nonlinear stiffness, distribution of internal forces, and energy dissipation capacity. The test results indicated that the yield of elliptic braces would delay the failure mode of adjacent elliptic columns and thus, help tolerate a significant nonlinear deformation to the point of ultimate failure. Symmetrical behavior, high energy absorption, appropriate stiffness, and high ductility in comparison with the conventional systems are some of the advantages of the proposed system.