• Title/Summary/Keyword: Ductile strengthening

Search Result 78, Processing Time 0.025 seconds

Experimental study of masonry walls strengthened with CFRP

  • Wei, Chang-Qin;Zhou, Xin-Gang;Ye, Lie-Ping
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.675-690
    • /
    • 2007
  • In order to study the ductility and the lateral load carrying capacity of the masonry walls strengthened with CFRPs (Carbon Fiber Reinforced Polymer sheets), three pieces of masonry walls subjected to cyclic loads with low frequency and vertical load of constant amplitude have been tested. Two different strengthening methods have been used. The strengthening efficiency is affected by the strengthening method. A simplified calculation approach has been introduced based on the experimental test results, and the theoretical results agree reasonably well with the experimental results. It is found that the critical loads, the critical displacements, the ultimate loads, the ultimate displacements and the ductile coefficients of the masonry walls strengthened with CFRPs improve remarkably (6%~57%). Therefore, the masonry structures strengthened with CFRPs are of better ductility and of better lateral load carrying capacity than the masonry structures without any strengthening measurements.

Analytical study of the verification of the performance improvement of the strengthening systems for the open cut tunnel (개착식터널의 내진성능보강 효과분석에 대한 해석적 연구)

  • Kim, Ki-Hong;Kwon, Min-Ho;Jang, Young-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.456-461
    • /
    • 2011
  • Recently the design specification has been advanced with preventing earthquake disaster in Korea because of increasing occurrence of large size earthquake. A composite plate with ductile fiber is proposed, which can enhance the performance of built tunnel in both strength and ductility. This study is to focus to verify the effect of strengthening of existing tunnels which is built without earthquake type load scenario, so that it can provide the safety of existing urban subway system against earthquakes.

  • PDF

Properties of Ductile Hybrid FRP Sheet for Strengthening of Reinforced Concrete Beams (철근콘크리트 보의 보강용 연성 하이브리드 FRP 시트의 특성)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.509-510
    • /
    • 2009
  • In strengthening reinforced concrete beams using fiber reinforced polymer sheets, brittle structural failures occur due to the linear stress-strain relationship of the fibers. Hybrid fiber reinforced polymer sheets using two different types of fibers were investigated in this study

  • PDF

The Study on the Strength and Toughness of Austempered Ductile Cast Iron (오스템퍼 처리(處理)한 구상흑연주철(球狀黑鉛鑄鐵)의 강인화(强靭化)에 관(關)한 연구(硏究)(1))

  • Lee, Young-Kye;Kim, Sug-Won;Kim, Dong-Keon;Lee, Bang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.10 no.2
    • /
    • pp.144-153
    • /
    • 1990
  • Ductile cast iron has good ductility and toughness, for the graphite morphology is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the modification of matrix structure by the heat treatment or the addition of alloying elements. In this study, effects of various special heat treatments (cyclic heat treatment and intermediate heat treatment) and Ni addition on the toughness and strength of the austempered ductile cast iron were studied. The results obtained from this study were as follows : 1. The amount of fine pearlite was increased with the Ni content and the number of cycle in cyclic heat treatment. 2. When the specimens treated and not by special heat treatment at 820 was austempered, in the former the austenite was formed on grain boundary entirely, but in the latter on grain boundary partially. 3. The impact energy was decreased with the Ni content, because the coarisen austenite pools formed with the Ni content was transformed into martensite during quenching. 4. The mechanical properties of austempered ductile cast iron containing 2%Ni treated cyclic heat treatment(5 cycles)was very excellent in handness 99(HRB), impact energy 12(kg-m) maximum fracture load 1500(kg-f).

  • PDF

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.

Seismic Performance of Piloti-Type Structures with Columns Strengthened with Aramid Fiber Sheets (아라미드 섬유시트로 기둥 보강된 필로티 구조물의 내진성능 평가)

  • Keun-Hyeok Yang;Ju-Hyun Mun;Chae-Rim Im;Kwang-Geun Rho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.201-210
    • /
    • 2023
  • This study is to evaluate the ductility strengthening effect of aramid fiber sheets on piloti-type structures. Two piloti-type structure specimens were prepared and tested under statical cyclic lateral loads. The ductility strengthening effect was validated from the analysis of lateral load-displacement relationship, displacement ductility ratio, work damage index and torsion behavior. Test results showed that the post-peak behavior of piloti-type structures with columns strengthened with aramid fiber sheets tended to be ductile resulting from preventing shear failure and minimizing torsion due to the effective lateral confinement of column concrete by aramid fiber sheet. Consequently, the displacement ductility ratio and work damage index of piloti-type structures with columns with strengthened with aramid fiber sheets were 4.63 and 42.81 times higher than those of non strengthened piloti-type structures.

FRP versus traditional strengthening on a typical mid-rise Turkish RC building

  • Smyrou, Eleni
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.

Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon (질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동)

  • Lee, S.Y.;Kim, B.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

Effects of the Alloying Elements and Special Heat Treatment on the Multi-phase (Ferrite-Bainite-Martensite), Strength and Toughness in Ductile Cast Iron (구상흑연주철(球狀黑鉛鑄鐵)의 혼합조직(混合組織) 및 강인성(强靭性)에 미치는 합금원소(合金元素)와 특수열처리(特殊熱處理)의 영향(影響))

  • Kim, Sug-Won;Lee, Eui-Kweon;Sim, Jae-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.432-440
    • /
    • 1993
  • Ductile cast iron has a good ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. Also, it has been reported that, additional strengthening and toughening of the ductile cast iron can be obtainded from the proper combination of matrix structures by the heat treatment and addition of alloying elements. In this study the effect of special heat treatment and addition of alloying elements(Ni, Mo) on the multi-phase(ferrite-bainite-martensite) structures, strength and toughness of ductile cast iron were studied systematically. In water quenching from $770^{\circ}C$, the martensite volume(%) increased, but the ferrite volume(%) decreased with increment of Ni content. In as cast, pearlite volume(%) and hardness increased with increment of Mo and Ni contents. And with the increment of the destabilization austempering holding time, the bainite volume(%) increased but the martensite volume(%) decreased. As destabilization austempering holding time is same, bainite volume(%) decreased, martensite increased with the increment of Ni and Mo contents. The hardness and tensile strength decreased, but impact energy increased with the decrease of Ni and Mo contents, and increment of holding time of destabilization austempering treatment.

  • PDF

Stfuctural Behavior of Cracked Reinforced Concrete Beams Strengthened by Epoxy Bonded Steel Plates(EBSP) (에폭시 접착강판으로 보강된 철근콘크리트보의 구조적 거동에 관한 연구)

  • 김유식;류해준;최완철;홍기섭;신영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.25-29
    • /
    • 1994
  • A series of 6 reinforced concrete beams was tested to verify the effects of EBSP strengthened on cracked beams and to identify the various parameters affecting structure strengthening design(SSD). The parameters were the cross-sectional area of steel plates, the thickness of steel plates, and bond length of steel plates. In addition to these parameters, the effect of existing cracks on the strengthening was investigated. Test results show that EBSP is very effective and predictable for strengthening damaged structures. The results also show that the bond length of steel plates is the most important factor to develop ultimate load carrying capacities of strengthened beams. However, considerations in SSD should be given to assure the ductile failure at ultimate load such as the low ratio of thickness to the width of plates.

  • PDF