• Title/Summary/Keyword: Ductile mode

Search Result 189, Processing Time 0.022 seconds

Effect of Heat Treatment on the Tensile Deformation Behavior of Au-Sn Strip Manufactured by Strip Casting Process (박판 주조법으로 제조된 Au-Sn 스트립의 열처리에 따른 인장 변형 거동)

  • Lee, Kee-Ahn;Jin, Young-Min;NamKung, Jung;Kim, Mun-Chul
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.464-466
    • /
    • 2009
  • This study tried to examine the suitability of strip casting process such as PFC (Planar Flow Casting) method for soldering Au-Sn strip. The effect of heat treatment on the tensile behavior and mechanical properties of an Au-Sn strip was investigated through tensile test, micro hardness test, X-ray diffraction (XRD), SEM, and TEM observations. It was apparent that 20-mm width Au-Sn strip could be well produced by using planar flow casting process. Tensile results showed that tensile strength increased from 338.3MPa to 310MPa and plastic strain improved from 0% to 1.5% with heat treatment ($170^{\circ}C$/70 hrs.). The microstructure of Au-Sn strip mainly consisted of two phases; $Au_5Sn(\zeta)$ and AuSn($\sigma$). It was also found that inhomogeneous amorphous local structure continuously changed to the homogeneous two phases microstructure with heat treatment. The fractographical observation after tensile test indicated the cleavage fracture mode of as-casted Au-Sn strip. On the other hand, the heat treated Au-Sn strip showed that fracture propagated along interface between brittle AuSn and ductile $Au_5Sn$ phases. The deformation behavior of strip casted Au-Sn alloy with microstructural evolution and the improve method for ductility of this alloy was also suggested.

  • PDF

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Analytical Study on Ductility Index of Reinforced Concrete Flexural Members (철근 콘크리트 휨부재의 연성지수에 관한 해석적 연구)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.391-402
    • /
    • 1994
  • One of the most important design concept for reinforced concrete structures is to achieve a ductile failure mode, and also moment redistribution for economic design is possible in case that adequate ductility is provided. Flexural ductility index is, therefore, used as a reference for possibility of moment redistribution as well as for prediction of flexural behavior of designed R.C. structures. Ductility index equations, however, provide approximate values due to the linear concrete compressive stress assumption at the tension steel yielding state. Theoretically more exact ductility index is calculated by a numerical analysis with the realistic stress-strain curves for concrete and steel to be compared with the result from tire ductility index equations. Variation of ductility index for the selected variables and the reasonable maximum tension steel ratio for doubly reinforced section are investigated. A moment-curvature curve model is also proposed for future research on moment redistribution.

  • PDF

Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups

  • Qissab, Musab Aied;Salman, Mohammed Munqith
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.347-358
    • /
    • 2018
  • The main aim of this research was to investigate the shear strength of non-prismatic steel fiber reinforced concrete beams under monotonic loading considering different parameters. Experimental program included tests on fifteen non-prismatic reinforced concrete beams divided into three groups. For the first and the second groups, different parameters were taken into consideration which are: steel fibers content, shear span to minimum depth ratio ($a/d_{min}$) and tapering angle (${\alpha}$). The third group was designed mainly to optimize the geometry of the non-prismatic concrete beams with the same concrete volume while the steel fiber ratio and the shear span were left constant in this group. The presence of steel fibers in concrete led to an increase in the load-carrying capacity in a range of 10.25%-103%. Also, the energy absorption capacity was increased due to the addition of steel fibers in a range of 18.17%-993.18% and the failure mode was changed from brittle to ductile. Tapering angle had a clear effect on the shear strength of test specimens. The increase in tapering angle from ($7^{\circ}$) to ($12^{\circ}$) caused an increase in the ultimate shear capacity for the test specimens. The maximum increase in ultimate load was 45.49%. The addition of steel fibers had a significant impact on the post-cracking behavior of the test specimens. Empirical equation for shear strength prediction at cracking limit state was proposed. The predicted cracking shear strength was in good agreement with the experimental findings.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Evaluation of Structural Performance of RC Beams Retrofitted Steel Fiber consequential Replacement of Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환골재와 고로슬래그 미분말을 치환한 강섬유 보강 RC보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • In this study, eleven reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate (BRS series) and recycled coarse aggregate with steel fiber (BSRS series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens (BSRS Series) was increased the compressive strength by 9%, the maximum load carrying capacity by 1~6% and the ductility capacity by 1.02~1.13 times in comparison with the standard specimen (BSS). And the specimens (BSRS Series) showed enough ductile behavior and stable flexural failure.

Estimation of Monkman-Grant Parameter for Type 316LN and Cr-Mo Stainless Steels (316LN 및 Cr-Mo 스테인리스강의 Monkman-Grant 파라메타 평가)

  • Kim, Woo-Gon;Kim, Sung-Ho;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.223-230
    • /
    • 2001
  • The Monkman-Grant (M-G) and its modified parameters were estimated for modified type 316LN and $9{\sim}12Cr-1Mo$ steels with chemical variations. Several sets of creep data were obtained by constant-load creep tests in $550-650^{\circ}C$ ranges. The relation parameters, m, $m^*$, C and $C^*$ were proposed and discussed for two alloy systems. In creep fracture mode, type 316LN steel showed domination of the intergranular fracture caused by growth and coalescence of cavities. On the other hand, the Cr-Mo steel showed transgranular fracture of the ductile type caused from softening at high temperature. In spite of the basic differences in creep fracture modes as well as creep properties, the M-G and its modified relations demonstrated linearity within the $2{\sigma}$ standard deviation. The value of the m parameter of the M-G relation was 0.90 in the 316LN steel and 0.84 in the Cr-Mo steel. The value of the $m^*$ parameter of the modified relation was 0.94 in the 316LN steel and 0.89 in Cr-Mo steel. The modified relation was superior to the M-G relation because the $m^*$ slopes almost overlapped regardless of creep testing conditions and chemical variations to the two alloy systems.

  • PDF

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.