• Title/Summary/Keyword: Ductile material

Search Result 368, Processing Time 0.031 seconds

Orientation Measurement and Related Mechanical Properties of Directionally Solidified NiAl/$Ni_3Al$ Two-Phase Alloys (일방향응고된 NiAl/$Ni_3Al$ 2상합금의 방향성 측정 및 기계적 특성 평가)

  • Lee, Hye-Jung;Park, No-Jin;Choi, Hwan;Lee, Je-Hyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.96-103
    • /
    • 2010
  • $Ni_3Al$ is known as a good high temperature structural material because of high yield strength at ambient temperature. However, it is too brittle to use as a structural material because of their weak grain boundary. In this work, orientation measurement and related mechanical properties of directionally solidified NiAl/$Ni_3Al$ two-phase alloys with various compositions (Ni-23~27 at.%Al) were investigated for developing multi-phase DS-processed alloys with the growth rates of 10, 50 and 100 ${\mu}m/s$ in a modified Bridgeman type furnace. It was found that the multi-phase microstructures such as the $\gamma$ dendrite +${\gamma}'$ matrix duplex microstructure was formed in the hypoeutectic composition of 23 at.%Al, $\beta$ dendrite +${\gamma}'$ matrix duplex microstructure in the hypereutectic composition of 26 and 27 at.%Al. And ${\gamma}'$ single phase was formed in the composition of 24.5 and 25 at.%Al. The hypoeutectic alloy including $\gamma$ dendrites with ${\gamma}'$ matrix showed a large elongation of over 70% at room temperature. However, the room-temperature tensile elongation decreased with increasing Al contents because the volume fraction of brittle $\beta$ dendrites in the ductile ${\gamma}'$ matrix increased.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels (인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가)

  • Park, Sang-Soon;Choi, Young-Min;Nam, Dae-Geun;Kim, Young-Seok;Yu, Ji-Hun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.

Material Characteristics of Ti-6Al-4V Alloy Manufactured by Electron Beam Melting for Orthopedic Implants (전자빔 용해 방법으로 제조된 정형외과 임플란트용 Ti-6Al-4V 합금의 재료 특성 분석)

  • Gang, Gwan-Su;Jeong, Yong-Hun;Jang, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;U, Su-Heon;Park, Tae-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.25-25
    • /
    • 2018
  • Electron beam melting (EBM) is one of powder based additive manufacturing technology used to produce parts for high geometrical complexity and directly with three-dimensional computer aided design (CAD) model. It is kind of the most promising methods with additive manufacturing for a wide range of medical applications, such as orthopedic, dental implant, and etc. This research has been investigated the microstructure and mechanical properties of as fabricated and hot iso-static pressing (HIP) processed specimens, which are made by an Arcam A1 EBM system. The Ti-6Al-4V titanium alloy powder was used as a material for the 3 dimensional printing specimens. Mechanical properties were conducted with EBM manufacturing and computer numerical control (CNC) machining specimens, respectively. Surface morphological analysis was conducted by scanning electron microscopy (SEM) for their surface, dissected plan, and fractured surface after tensile test. The mechanical properties were included tensile stress-strain and nano-indentation test as a analysis level between nano and macro. As following highlighted results, the stress-strain curves on elastic region were almost similar between as fabricated and HIP processed while the ductile (plastic deformed region) properties were higher with HIP than that of as fabricated processed.

  • PDF

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement (플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가)

  • Kwon, Seung-Jun;Jo, Hong-Jun;Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2014
  • Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

Optical, Mechanical and Tribological Properties of Boronnitride Dispersed Silicon Nitride Ceramics

  • Joshi, Bhupendra;Fu, Zhengyi;Niihara, Koichi;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.444-449
    • /
    • 2010
  • Transparent ceramics are used in new technology because of their excellent mechanical properties over glasses. Transparent ceramics are nowadays widely used in armor, laser windows, and in high temperature applications. Silicon nitride ceramics have excellent mechanical properties and if transparent silicon nitride is fabricated, it can be widely used. h-BN has a lubricating property and is ductile. Therefore, adding h-BN to silicon nitride ceramics gives a lubricating property and is also machinable. Translucent silicon nitride was fabricated by hot-press sintering (HPS) and 57% transmittance was observed in the near infrared region. A higher wt. % of h-BN in silicon nitride ceramics does not favor transparency. The optical, mechanical, and tribological properties of BN dispersed polycrystalline $Si_3N_4$ ceramics were affected by the density, ${\alpha}:{\beta}$-phase ratio, and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of $\alpha-Si_3N_4$, AlN, MgO, and h-BN at $1850^{\circ}C$. The composite contained from 0.25 to 2 wt. % BN powder with sintering aids (9% AlN + 3% MgO). A maximum transmittance of 57% was achieved for the 0.25 wt. % BN doped $Si_3N_4$ ceramics. Fracture toughness increased and wear volume and the friction coefficient decreased with an increase in BN content. The properties such as transmittance, density, hardness, and flexural strength decreased with an increase in content of h-BN in silicon nitride ceramics.

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

An Evaluation of Tensile Design Criteria of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장설계기준 평가)

  • Suh Yong-Pyo;Jang Jung-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2005
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed to simulate the clack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results for real tensile capacity of cast-in-place anchor.

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가)

  • Lee, Seong Hui;Shim, Hyun Ju;Lee, Eun Taik;Hong, Soon Jo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.493-501
    • /
    • 2007
  • Recently, in the domestic amount of materials,curtailment and economic efficiency security by purpose, tapered beam application is achieved, but the architectural design technology of today based on the material non-linear method does not consider solutions to problems such as brittle fracture. So, geometric non-linear evaluation thatincludes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. Therefore, in this study, we used ANSYS, a proven finite elementanalysis program,and material and geometric non-linear analysis to study existing and completed tapered H-section as deep beam's analysis model. Main parameters include the width-thickness ratio of web, stiffener, and flange brace, with the experimental result obtained by main variable buckling and limit strength evaluation. We made certain that a large width-thickness ratio of the web decreases the buckling strength and short unbraced web significantly improves ductility.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.