• Title/Summary/Keyword: Ductile cast iron

Search Result 166, Processing Time 0.027 seconds

Effects of Mo on the Mechanical Properties of Ductile Cast Iron with Cu Austempered at 380℃ (Cu가 함유된 구상흑연주철의 380℃에서 오스템퍼링 시 Mo이 기계적 특성에 미치는 영향)

  • Kim, G.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.219-224
    • /
    • 2013
  • In this study, we investigated effect of Mo addition on mechanical properties of Cu added ADI. Ductile cast iron specimens were austenitized at $900^{\circ}C$ for 150 min and then austempered at $380^{\circ}C$ for the various time periods from 15 min to 480 min. Mo added ADI had a higher volume fraction of retained austenite, and the volume fraction of retained austenite was determined by XRD analysis. As decreasing volume fraction of retained austenite, the elongation was also decreased as expected. But the UTS and yield strength were not decreased.

Effect of Austempering Temperature on the Mechanical Properties and Fracture Characteristic of Austemped Ductile Cast Iron (오스템퍼드 구상흑연 주철의 기계적 성질 및 파괴특성에 미치는 오스템퍼링 온도의 영향)

  • Kang, C.Y.;Kim, C.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.298-306
    • /
    • 1994
  • This study was performed to investigation the effect of austempering temperature on the mecanical properties and fracture Characteristic of the ductile cast iron with contains Cu and Mo. The obtained results of this study were as follows; Microstructure of austemped ductile cast iron obtained by austempering were low bainite with some martensite at $250^{\circ}C$, mixture of low and upper bainite at $300^{\circ}C$ and upper bainite at $350^{\circ}C$. With increasing austempering temperature, yield strength, tensile strength and hardness decreased, while the elongation and impact absorption energy increased. With increasing austempering temperature, fracture toughness value increased and mainly controlled by bolume fraction of retained austenite. The volume fraction of retained austenite increased and the fracture surface obtained fibrous and dimple with increasing austempering temperature.

  • PDF

Effect of Cu on the mechanical Properties and damping capacity of austempered ductile cast iron (오스템퍼링 처리한 구상흑연주철의 기계적 성질 및 감쇠능에 미치는 Cu의 영향)

  • Lee, K.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.72-77
    • /
    • 2008
  • This study was investigated to know the effect of Cu addition on austempered ductile cast iron at various temperatures and times. Test results showed that the volume fraction of retained austenite and the carbon contents of retained austenite showed the greatest value at $400^{\circ}C$. Also, in case of specimens having more Cu contents, the volume fraction of retained austenite and the carbon contents of retained austenite showed the lower value. After austempering treatment, tensile strength and Impact value increased, but elongation decreased. With increasing austempering treatment temperature, tensile strength, elongation, and impact value decreased. In case of specimen having more Cu contents, tensile strength showed the higher value, but elongation showed the lower value. Damping capacity was decreased by austempering treatment and was not affected on austempering temperature and time. In case of specimen having more Cu contents, damping capacity showed the higher value.

  • PDF

The Effect of the Multi-phase (ferrite-bainite-martensite) on the Strengthening and Toughening in the Ductile Cast Iron (구상흑연주철의 강인화에 미치는 3상 혼합조직의 영향)

  • Kim, Sug-Won;Lee, Bang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.310-321
    • /
    • 1988
  • This study is aimed to investigate the effects of the multi-phase(ferrite-bainite-martensite) on the strengthening and toughening in ductile cast iron. All the specimen were austenitized at eutectoid transformation temperature range(${\alpha}+{\gamma}$) for 1hr and austempered at $300^{\circ}C$ and $400^{\circ}C$ for various holding time, and then quenched in iced water for multi - phase (${\alpha}-B-M$). When the volume fraction of martensite is below 15%, excellent maximum fracture load can be obtained due to strengthening by the fine martensite, but, with increasing of volume fraction over 15%, it was decreased drastically. The martensite size became finer and the shape of it changed from bar to spherical type with increasing of austempering holding time. The higher the austenitizing temperature is, the more preferential is the formation of austenite phase around the graphite nodules improving strength and toughness of austempered ductile cast iron.

  • PDF

Evaluation of Fatigue Strength in Ductile Cast Iron by Maximum and Mean Size of Graphite (최대 및 평균 구상흑연크기에 의한 구상흑연주철재의 피로강도의 평가)

  • Yoon, Myung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 2012
  • For different ferrite-pearlite matrix structure, contain more than 90% spheroidal ratio of graphite, GCD 45-3, GCD 50, GCD 60 series and 70%, 80%, 90% spheroidal ratio of graphite, GCD 40, GCD 45-1, GCD 45-2 series, this paper has carried out rotary bending fatigue test, estimated maximum and mean size of spheroidal graphite, investigated correlation. It was concluded as follows. (1) Fatigue limit in $10^7$cycles and numbers of spheroidal graphite per 1$mm^2$ was linear relation. (2) projection area of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of projection area of defects may be used as a guideline for the control of inclusion size in the steelmaking processes.

Ability and Fading Behavior of Inoculants in Ductile Cast Iron Melt and Effect of Minor Elemets on them (구상흑연주철 용탕 중 접종제의 접종능과 페이딩 거동 및 이들에 미치는 미량 원소의 영향)

  • Kwon, San-Bin;Kwon, Hae-Wook;Nam, Won-Sik
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.102-108
    • /
    • 2005
  • The ability and fading behavior of inoculant in ductile cast iron melt and the effect of minor element on them were investigated. The result obtanied on nodularization and the performance of inoculant were more distinct when the melt was treated and held at the high temperature range of $1450{\sim}1500^{\circ}C$ than at the lower one of $1350{\sim}1400^{\circ}C$. The performance of 5.2%Mg-Fe-Si alloy was the best of 4 nodularizers. That of Fe-75%Si(I) alloy was better than other 4 inoculants. The performance of the Fe-75%Si(I) inoculant was deteoriated by the addition of sulfur or bismuth. On the other hand, that was improved by the addition of cerium, even though its extent was not big.

A Study on Cutting Characteristic in Turning Ductile Cast Iron(FCD500) (구상화 흑연주철(FCD500)의 가공성에 관한 연구)

  • Oh, Sung-Hoon;Kim, Ho-Geon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • The purpose of this study is to investigate cutting characteristics and wear behavior in FCD500 ductile cast iron turning with different cutting tools, tungsten-carbide and CBN. Mechanical property, cutting characteristics and the application to the real industrial area is the final purpose. FDC500 ductile cast iron is now widely used in the various commercial vehicle parts for increased machine abilities which accrue more tensile strength with lower hardness. Several studies have been fulfilled for the material and heat-treatment area, but few with the cutting characteristics and wear behavior in the turning area.

Mechanical Properties of High Strength Ductile Cast Iron for Brake Caliper (브레이크 캘리퍼용 고강도 구상흑연주철의 기계적 특성)

  • Bae, Cha-Hurn;Lee, Woo-Chul;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.170-174
    • /
    • 2008
  • Mechanical properties of high strength ductile cast iron for the brake caliper of truck were investigated. Meanwhile the nodularity and nodule count decreased respectively from 92 and 95 to 80% and $60/mm^2$ with increased thickness, the volume fractions of graphite, pearlite and ferrite didn't change much and were in the ranges of 12.0-13.5, 52.6-55.0 and 33.0-35.2, respectively. Hardness, tensile strength and elongation in the mechanical properties of the castings of brake caliper were BHN 241, 710 MPa and 9.5%, respectively.

Effect of Subzero Treatment on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 미세조직 및 기계적 성질에 미치는 서브제로처리의 영향)

  • Lee, K.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • This study was investigated the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment and strain. With decreasing subzero treatment temperature and increasing strain, retained austenite transformed more to martensite and transformed 30% above by subzero treatment at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and ratio of increasing of strength, hardness and ratio of increasing of hardness increased but the value of elongation and ratio of decreasing of elongation decreased. With decreasing subzero treatment temperature, impact value and ratio of decreasing of impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased above 20%. We could find that in subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

Effect of Carbon Equivalent on the Fading Behavior of Hypoeutectic Ductile Cast Iron (아공정 구상흑연주철의 Fading 거동에 미치는 탄소당량의 영향)

  • Park, Hun-Berm;Park, Sang-Jun
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.290-294
    • /
    • 2004
  • The effect of carbon equivalent on the fading behavior of hypoeutectic ductile cast iron was investigated. The carbon content was slightly increased right after graphite spheroidization treatment and remained almost constant with holding at $1,490^{\circ}C$ after 4 minute. The residual magnesium content was decreased slowly with holding. The empirical equation expressing the relationship between this and holding time was proposed ; $C=C_o-P{\times}t$. The proportionality constant, P, was inversely proportional to carbon content.