• Title/Summary/Keyword: Ductile cast iron

Search Result 166, Processing Time 0.027 seconds

Effect of Shot Peening on Microstructural Evolution of 500-7 Ductile Cast Iron

  • Zhang, Yubing;Shin, Keesam
    • Applied Microscopy
    • /
    • v.48 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Ductile cast iron is widely used for many automotive components due to its high wear resistance and fatigue resistance in addition to the low cost of fabrication. The improvement of wear resistance and fatigue properties is key to the life time extension and performance increase of the automobile parts. Surface nanocrystallization is a very efficient way of improving the performance of materials including the wear- and fatigue-resistance. Shot peening treatment, as one of the popular and economic surface modification methods, has been widely applied to various materials. In this study, ductile cast iron specimens were ultrasonic shot peening (USP) treated for 5 to 30 min using different ball size. The microstructures were then microscopically analyzed for determination of the microstructural evolution. After the USP treatment, the hardness of pearlite and ferrite increased, in which ball size is more effective than treatment time. With USP treatment, the graphite nodule count near the surface was decreased with grain refinement. The lager balls resulted in an increased deformation, whereas the smaller balls induced more homogenously refined grains in the deformation layer. In addition, formation of nanoparticles was formed in the surface layer upon USP.

Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.171-181
    • /
    • 2016
  • In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

Study on the Effect of Mo Addition and Casting Thickness on the Mechanical Properties of Thin Ductile Cast Iron (박육구상흑연주철에 있어서 Mo 첨가 및 주물두께의 영향에 관한 연구)

  • Song, Byeong-Woo;Choi, Yang-Jin;Kim, Yong-Hwan;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.175-186
    • /
    • 1993
  • In this study, the effect of Mo addition on the microstructure and mechanical properties of ductile cast iron have been investigated. The amounts of Mo and the thickness of specimen have been varied from 0 to 4.79wt% and 13mm, 10mm and 6mm, respectively. As the casting thickness decreases, the average size of spheroidal graphite is decreased and the hardness increases. By increasing the Mo content, the tensile strength of ferrite and pearlite matrix increases and shows maximum which is about $30{\sim}40%$ higher than ordinary ductile cast iron. After the maximum, adding more Mo results in gradual transformation of ferrite and pearlite to bainite and thus tensile strength decreases again. The elongation decreases continueously with Mo content. The addition of Mo about $0.5{\sim}1.0wt%$ improves the wear resistance and tensile strength of thin ductile cast iron.

  • PDF

Effect of Subzero Treatment on the Damping Capacity of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 감쇠능에 미치는 서브제로 처리의 영향)

  • Kang, Chang-Yong;Jo, Duck-Ho;Kim, Yun-Kyu;Han, Hyun-Sung;Lee, Hae-Woo;Sung, Jang-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.169-174
    • /
    • 2009
  • The effect of sub zero treatment on the damping capacity in austempered ductile cast iron investigated. Austenite transformed in to martensite by subzero treatment, and with the decrease of subzero treatment temperature, volume fraction of martensite increased. Damping capacity of austempered ductile cast iron was highly increased by subzero treatment, with the decrease of subzero treatment temperature, damping capacity was slowly increased. With the decrease of subzero treatment time, damping capacity was rapidly increased to 30 min. and then slowly increased. With the increase of volume fraction of martensite, damping capacity rapidly increasing to 5% and then slowly increased.

A study for the Effects of Sb Addition on the properties of Cast Iron (I) (주철(鑄鐵)의 성질(性質)에 미치는 Sb 첨가(添加)의 효과(效果)에 관(關)한 연구(硏究)(I);기계적(機械的) 성질(性質)과 Pearlite의 안정화효과(安定化效果)를 중심(中心)으로)

  • Lee, Byeong-Yehp;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.20-29
    • /
    • 1984
  • It is very important to obtain gray and ductile cast irons with completely pearlitic structure by addition more economical alloying elements. In this study, 9 melts of gray iron and 5 melts of Mg-treated ductile cast iron were made according to Sb content (0-0.08% Sb). Each melt were casted to ${\phi}20mm$ test bars in sand mold under the same condition and inspected microstructure, mechanical and thermal properties. The results obtained from this study are as follows: 1. It is confirmed that Sb should be an economical, simple and useful additive for avoiding ferrite in gray and even in ductile cast irons. 2. For gray cast iron, the recommended ladle addition of metallic Sb amounts to 0.05%. At these levels, Sb has no detrimental influence on the mechanical properties of gray cast irons, which are normally modified according to their pearlite content without increasing the chilling tendency. 3. Despite its adverse influence on graphite shape in ductile iron, Sb can be used as a pearlite stabilizing alloying element even in the case of Mg - treated iron. The quantity to be added does not exceed 0.04% in the case of thinwalled castings. 4. The nodule count is increased very much and the shape of graphite particles become remarkably spheroidal. The matrix may be fully pearlitized, except for thin - walled castings, because the high nodule count results inevitably in some ferrite. 5. The $Ac_1$ and pearlite decomposition temperature are rised in accordance with increasing of additive Sb amount.

  • PDF

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

Effects of Heat-Treatment and the Addition of Copper on the Processing Window of 3.6wt%C-2.5wt%Si Austempered Ductile Cast Iron (3.6wt%C-2.5wt%Si 오스템퍼드 구상흑연주철의 프로세싱 윈도우에 미치는 열처리 및 구리 첨가의 영향)

  • Kwon, Do-Young;Oh, Jeong-Hyeok;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • The effects of austempering temperature, austenitizing temperature and time, added copper content and prior heat-treatment on the processing window of 3.6wt%C-2.5wt%Si ductile cast iron during austempering. The maximum processing window was obtained at 350℃ of austempering temperature. The processing window was increased with increased austenitizing temperature from 850 to 900℃; however, it decreased at 950℃. The processing window was increased with increased austenitizing time from 0.5 to 2 hours and rather decreased for 4 hours. The optimum condition of austenitizing was obained at 900℃ for 2 hours. The processing window was increased with copper content added in the range of 0.0~0.8wt%. The processing window was increased by prior normalizing heat-treatment and decreased by prior annealing in comparison with that for the as-cast state,

The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment (산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구)

  • 임우조;박동기
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.299-304
    • /
    • 2002
  • This paper reports the studies on the wear-corrosion behavior of ductile cast iron in the acidic environment. In atmosphere and variety of pH solution, specific wear rate and wear-corrosion characteristics of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH values. The main results are as following : As the contact pressure increases, the critical velocity of specific wear rate becomes transient at low sliding speed. As pH value becomes low, wear-corrosion loss increases in the aqueous solution. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble and corrosion current density increases.

The Effect on the Wear-Corrosion Behavior of Ductile Cast Iron in the Various pH Environments (구상흑연주철재의 마멸-부식특성에 미치는 pH의 영향)

  • 임우조;박동기
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • This paper reports the studies on the wear-corrosion behavior of ductile cast iron in the various pH environments. In the variety of pH solutions, corrosion and wear-corrosion loss of GCD 600 were investigated. Also, the anodic polarization test of GCD 600 using potentiostat/galvanostat was carried out. And rubbed surface of GCD 60 using scanning electron micrographs after immersion and wear-corrosion test was examined in the environment of various pH values. The main results are as following In alkali zone, the wear-corrosion loss of GCD 600 increases, but corrosion loss decreases. The unevenness and crack of wear-corrosion surface in neutral zone becomes duller than that in alkali zone. As the corrosive environment is acidified, wear-corrosion behavior of GCD 600 with passing immersion time becomes sensitive.