• Title/Summary/Keyword: Ductile cast iron

Search Result 166, Processing Time 0.025 seconds

Changes of Microstructure due to Mn Element and Pearlite-Bainite Transformation Treatment in Ductile Cast Iron (구상흑연주철의 Mn성분과 펄라이트-베이나이트변태 처리의 변화가 미세조직에 미치는 영향)

  • Suh, Kwan-Soo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.230-237
    • /
    • 1992
  • The purpose of present investigation is to obtain ductile cast iron with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast irons having three kinds of Mn ampunt had been manufactured. Mn increased pearlite volume fraction iin as-cast ductile cast iron. Ductile cast irons of different pearlite fraction were austenitized at $875\;^{\circ}C$ for 230-350 sec or $925\;^{\circ}C$ for 130-170 sec followed by austempering at $300\;^{\circ}C$ or $400\;^{\circ}C$ for the various periods of time from 5 to 30 min. When specimen was austenitixed for 130 sec at $925\;^{\circ}C$ and for 230 sec at $875\;^{\circ}C$, pearlite was transformed into austenite. Bainite around graphite was found at $925^{\circ}C$ for 170 sec. Bainite in grain boundary of ferrite was happened at $875^{\circ}C$ for 350 sec. During the austempering process, acicular bainite was precipitated at $300^{\circ}C$ and lath bainite was precipitated at $400^{\circ}C$. Increment in manganese content restrained bainitic transformation. Retained austenie was of little quantity.

  • PDF

Effects of high Si-P Addition on Microstructure and Mechanical Properties of Thin Ductile Cast Iron (고 Si-P 첨가가 박육구상흑연주철의 미세 조직과 기계적 성질에 미치는 영향)

  • Park, Yong-Jin;Choi, Yang-Jin;Park, In-Sun;Kim, Young-Hwan;Lee, Hyo-Sang
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 1995
  • Effects of high Si-P addition on microstructure and mechanical properties of thin ductile cast iron have been investigated. The amount of silicon addition have fixed on 4.0wt% and the amounts of phosphorus addition and thickness of specimen have been varied from 0.05 to 0.8wt% and ${\phi}13mm$, ${\phi}10mm$ and ${\phi}6mm$, respectively. As the casting thickness decreased, the average diameter of spheroidal graphite was decreased and the hardness of the cast iron increased. By adding P, the average diameter of spheroidal graphite was increased and the count of the spheroidal graphite was decreased continuously. And the tensile strength and the elongation was decreased, and the hardness was increased. With the P added more than 0.2wt%, the abraded amount was decreased significantly. The addition of P improved the wear resistance and the hardness of thin ductile cast iron.

  • PDF

The Effects of Se, CaCo and CaO Addition on the 1st Stage Graphitization of Malleable Cast Iron (오스템퍼 처리한 구상흑연주철의 강인성에 미치는 전조직의 영향)

  • Kim, Sug-Won
    • Journal of Korea Foundry Society
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 1986
  • Austempered ductile cast iron has been well known for their good toughness and strength. Generally these properties were improved by the various heat treatments and alloying elements. In this study, the effects of prior heat treatment history(near ferrite, near pearlite, near martensite) on the toughness and strength of the austempered ductile cast iron were studied experimentally and theoretically. All of the test specimens was austenitized at $900^{\circ}C$ for 1 h and austempered at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, $450^{\circ}C$, respectively. The prior structure of near martensite in austempered ductile cast iron was not good in term of toughness and strength because the carbon content was apt to high in austenite during ausnitizing. It was found, on the other hand, that the ferrite matrix as prior structure had good combination of toughness and strenght. The best tensile strength and good toughness were obtained at $300^{\circ}C$, austemper in the prior structure of near ferrite, while $400^{\circ}C$ austemper in that of near pearlite and martensite.

  • PDF

Feasibility Study on Ultrasonic Velocity for Evaluation of Microstructure and Quality of Cast Iron (초음파 속도 측정에 의한 주철의 미세구조 및 품질평가 가능성 검토)

  • Choi, C.Y.;Hyun, C.Y.;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • It was attempted to evaluate the microstructure and quality of various types of cast iron by ultrasonic velocity measurement. Three types of commercial gray cast iron and ductile cast iron were used for this investigation, respectively. One type of the ductile cast iron was heat-treated as a function of annealing time to produce different microstructure. Ultrasonic velocity measurement, microstructural analysis (pearlite area fraction, graphite length and nodularity), and hardness measurement were performed to find empirical correlations among these parameters. Ultrasonic velocity of ductile cast iron was markedly faster than that of gray cast iron. Ultrasonic velocity decreased with the decrease of fraction of pearlite structure. As a quality monitoring parameter of cast iron, potential of ultrasonic velocity was suggested.

Comparative Evaluation of the Characteristics of High Si-High Mo Ductile Cast Iron, High Si-High Mo C. V. Cast Iron and Ni-resist Cast Iron (고규소 고몰리브덴 구상흑연주철, 고규소 고몰리브덴 C. V. 주철 및 Ni-resist 주철 특성의 비교 평가)

  • Ju, Young-Kyu;Choe, Kyeong-Hwan;Lee, Sang-Mok;Kim, Myung-Ho;Yun, Sang-Weon;Lee, Kyong-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.120-127
    • /
    • 2009
  • The characterestics of high Si-high Mo ductile cast iron, high Si-high Mo C.V. cast iron and Ni-resist cast iron were compared and evaluated. The nodule count of the last one was lower and the nodularity was higher than those for the first one, respectively. The first two had ferritic matrices with small amounts of molybdenum carbides. The first one had the highest tensile strength and the last one the lowest elongation. This had the highest high temperature strength and that of the second one was greatly increased from the room temperature strength. The volumes of the first two were decreased during cooling and that of the last one changed little. The thermal expansion coefficient of the last one was the highest and the first one the lowest. During high temperature oxidation, even though the volume of the first one was increased, the weight was decreased and the volume and weight of the second one were increased. The change of the increased weight of the last one was more than that of thickness.

Effects of Alloying Elements on the Mechanical Properties of Annealed and Normalized 3.60wt%C-2.50wt%Si Ductile Cast Irons (3.60wt%C-2.50wt%Si 구상흑연주철의 소둔 및 소준시 기계적 성질에 미치는 합금 원소의 영향)

  • Baek, Jong-Kyu;Seo, Gap-Seong;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.159-166
    • /
    • 2007
  • Effects of alloying elements on the mechanical properties of 3.60wt%C-2.50wt%Si ductile cast iron with annealing and normalizing were investigated. Yield and tensile strengths were increased from 278 and 415 MPa to 316 and 440 MPa respectively as manganese content was increased upto 0.45wt% while elongation was decreased from 24.2 to 5.0%. The formers were increased and the latter was decreased with the increased amount of copper, molybdenum or nickel added. Meanwhile the tensile strength of annealed specimen was increased with the amount of alloying elements added, it was decreased by annealing. It was increased greatly by normalizing and the amount of alloying elements added except molybdenum.

The Effect of Alloying Elements and Cooling Rate on the Eutectoid Transformation of Ductile Cast Iron (구상흑연주철의 공석변태에 미치는 합금원소 및 냉각속도의 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.9 no.6
    • /
    • pp.483-489
    • /
    • 1989
  • In the stable eutectoid transformation of austenite in ductile cast iron, ferrite forms around the graphite spheroid. As carbon diffuses through the ferrite ring, the graphite spheroid must eularge and the ferrite ring must deform plastically to accomodate this growth. A model has been proposed to clarify this mechanism. The alloying effects of molybdenum, nickel and copper were studied in a series of heats cast into a range of casting section sizes. Regression analysis was used to illustrate the effects of alloying and cooling rate on the microstructure of ductile cast iron.

  • PDF

Effect of Heat Treatment on the Microstructure and Hardness of Internally Hardened Ductile Cast Iron Roll (내부경화형 구상흑연주철 롤의 미세조직과 경도에 미치는 열처리의 영향)

  • Sang-Mook Lee;Do-Hoon Kim;Seo-Hyun Yun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This study was investigated the effect of heat treatment on the microstructure and hardness of internally hardened ductile cast iron roll. The following conclusions were obtained. Some of the graphite was decreased and a bainite was produced by heat treatment. It decreased due to the decomposition of some of the cementite precipitated in the as-cast by heat treatment, but there was no significant change when it reached a certain depth. Hardness increased due to formation of bainite by heat treatment. On the surface, the hardness decreased due to the decrease in the amount of transformation of cementite into bainite, but there was no change beyond a certain depth.

Evaluation of Fatigue Strength by Graphite in Ductile Cast Iron (구상흑연주철재의 흑연에 의한 피로강도의 평가)

  • 이경모;윤명진;이종형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.214-221
    • /
    • 2003
  • In this study, based on the effect of the interaction of fracture mechanics by graphite and fatigue limit phenomena of the microscopic observation various matrix structure, spheroidal ratio, size of graphite and distribution etc. parameters containd with Ductile Cast Iron. Therefore, in this study, different ferrite-pearlite matrix structure and spheroidal ratio of graphite of 70%, 80% and 90%, GCD40, GCD45-1 and GCD45-2 series and three different ferrite-pearlite matrix structure, GCD 45-3, GCD 50, GCD 60 series, all of which contain more than 90% spheroidal ratio of graphite, were used to obtain the correlation between mean size of spheroidal graphite and fatigue strength. (1) 73% pearlite structure had the highest fatigue limitation while 36% pearlite structure had the lowest fatigue limitation among ferrite-pearlite matrix. the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 10%, distribution range of fatigue life was small in same stress level. (2) (equation omitted) of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of (equation omitted) may be used as a guideline for the control of inclusion size in the steelmaking processes.

A study on the Effect for Process Parameters on the Micro-pulse Plasma Nitriding of Ductile Cast Iron (구상흑연주철의 마이크로 펄스 플라즈마 질화에 미치는 공정변수의 영향에 관한 연구)

  • 김무길;이철민;권성겸;정병호;이재식;유용주;김기준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • The effect of time, temperature and gas composition on the case hardened thickness, hardness and nitride formation in the surface of ductile cast iron(GCD400) have been studied by micro-pulse plasma technique. Typically, external compound layer and internal diffusion layer which is much thicker than compound layer was observed in the nitride hardening of ductile cast iron. The relative amount kind of phases formed in the nitrided hardening changed with the change of nitriding conditions. Generally, only nitride phases such as $\gamma^'$($Fe_4N$), or $\varepsilon$($Fe_{2-3}N$) phases were detected in compound layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. The optimum nitriding temperature was obtained at $520^{\circ}C$. The nitrided hardening thickness parabolically with nitriding time(t) and thus, the case hardened layer(d) fits well with the typical parabolic equation ; d=kt. The material constant k for GCD400 nitrided at $520^{\circ}C$ was $0.04919\times10^3{\mu}m.hr^{-1/2}$.

  • PDF