• 제목/요약/키워드: Ductile capacity

검색결과 293건 처리시간 0.024초

오스템퍼드 구상흑연주철의 감쇠능에 미치는 서브제로 처리의 영향 (Effect of Subzero Treatment on the Damping Capacity of Austempered Ductile Cast Iron)

  • 강창룡;조덕호;김윤규;한현성;이해우;성장현
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.169-174
    • /
    • 2009
  • The effect of sub zero treatment on the damping capacity in austempered ductile cast iron investigated. Austenite transformed in to martensite by subzero treatment, and with the decrease of subzero treatment temperature, volume fraction of martensite increased. Damping capacity of austempered ductile cast iron was highly increased by subzero treatment, with the decrease of subzero treatment temperature, damping capacity was slowly increased. With the decrease of subzero treatment time, damping capacity was rapidly increased to 30 min. and then slowly increased. With the increase of volume fraction of martensite, damping capacity rapidly increasing to 5% and then slowly increased.

오스템퍼링 처리한 구상흑연주철의 기계적 성질 및 감쇠능에 미치는 Cu의 영향 (Effect of Cu on the mechanical Properties and damping capacity of austempered ductile cast iron)

  • 이광희;강창룡
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.72-77
    • /
    • 2008
  • This study was investigated to know the effect of Cu addition on austempered ductile cast iron at various temperatures and times. Test results showed that the volume fraction of retained austenite and the carbon contents of retained austenite showed the greatest value at $400^{\circ}C$. Also, in case of specimens having more Cu contents, the volume fraction of retained austenite and the carbon contents of retained austenite showed the lower value. After austempering treatment, tensile strength and Impact value increased, but elongation decreased. With increasing austempering treatment temperature, tensile strength, elongation, and impact value decreased. In case of specimen having more Cu contents, tensile strength showed the higher value, but elongation showed the lower value. Damping capacity was decreased by austempering treatment and was not affected on austempering temperature and time. In case of specimen having more Cu contents, damping capacity showed the higher value.

  • PDF

구조용 용접철망을 사용한 일방향 슬래브의 휨거동에 관한 실험적 연구 (An Experimental Study on flexural behavior of One -Way Concrete Slabs using Structural Weled Wire - Fabric)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.226-231
    • /
    • 1993
  • This research is undertaken to the flexural strength, failure mode and ductile capacity of one way concrete slabs, with without splices, reinforcement with Wire-Fabric. Test results are as fallows : (1) Crack of the simple slabs is occured at a position of transerve wire and sntirely crack interval of the fixed slabs is taken place about 20cm, (2)Maximum load of slab with splices has showed almost similar to that of slab without splices, but ductile capacity increased according to rising of splices, (3) Ductile capacity of slab with Deformed Bar is higher 1.44 times than that of slab with Wire-Fabric, and it is higher 3.74 times than that of slab with Loop-wire fabric, but that of specimens of using Wire-Fabric is average 4.6.

  • PDF

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

DDC를 활용한 건식 보-기둥 모멘트 접합부의 내진 성능에 관한 연구 (A Study on the Energy Dissipation Capacity of Precast Concrete Beam-Column Connection using DDC)

  • 홍성걸;이상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.85-88
    • /
    • 2004
  • In this study, a simple moment-resisting precast concrete beam-column connection is proposed for highly seismic zone using dywidag ductile rod [DDC]. DDC is superior system for ductility, energy dissipation capacity, connection strength, and drift capacity. A study was carried out to investigate the connection behavior subjected to cyclic inelastic loading. Four Precast beam-column interior connections and one monolithic connection will be tested. The variables will be examined were the strength relationship between joint's ductile rod and beam reinforcement for gain energy dissipation capacity. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. the precast connection using DDC is capable of matching of exceeding the performance of the monolithic connection and thereby provides moment-resisting behavior.

  • PDF

마이크로 역학에 의하여 설계된 고인성 섬유복합 모르타르의 1축인장 거동 (Uniaxial tension behavior of high ductile fiber reinforced mortar designed based on micromechanics)

  • 김윤용;김정수;김희신;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.284-287
    • /
    • 2004
  • A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially performed to properly select water-cement ratio, and then optimal mixture proportion was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests revealed that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by $1.8\%$ strain capacity, which is around 100 times the strain capacity of normal concrete.

  • PDF

오스템퍼드 구상흑연주철의 기계적 성질 및 감쇠능에 미치는 서브제로처리의 영향 (Effect of Subzero Treatment on the Mechanical Properties and Damping Capacity of Austempered Ductile Cast Ironn)

  • 이광희;권민기;김창규;강창룡
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.86-91
    • /
    • 2007
  • This study was investigated to know the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment. With decreasing subzero treatment temperature, more volume fraction of retained austenite transformed to martensite and transformed to martensite above 30% by subzero treatment temperature at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and hardness increased but the value of elongation and impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased by above 20%. We could find that subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

Application of a ductile connection system to steel MRF strengthened with hinged walls

  • Zhi Zhang;Yulong Feng;Dichuan Zhang;Zuanfeng Pan
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.487-498
    • /
    • 2024
  • Steel moment resisting frames (MRFs) typically have inter-story drift concentrations at lower stories during earthquakes as found from previous research. Hinged walls (HWs) can be used as structural strengthening components to force the MRFs deform uniformly along the building height. However, large moment demands are often observed on HWs and make the design of HWs non-economical. This paper proposes a method to reduce the moment demand on HWs using a ductile connection system between the MRFs and the HWs. The ductile connection system is designed with a yield strength and energy dissipation capacity, for the purpose of limiting the seismic forces transferred to the HWs and dissipating seismic energy. Nonlinear time history analyses were performed using 10 far-filed earthquakes at maximum considered earthquake level. The analysis results show that the proposed ductile connection system can reduce: (1) seismic moment demands in the HWs; (2) floor accelerations; (3) the connection force between HWs and MRFs.