• 제목/요약/키워드: Ductile

검색결과 1,676건 처리시간 0.027초

Wet-mix Shotcreting Application of High Ductile Fiber Reinforced Mortar Designed by Optimizing Mix Proportion

  • 김윤용;김정수;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.581-584
    • /
    • 2004
  • High ductile fiber reinforced mortar suitable for wet-mix shotcreting (sprayable ductile mortar) 10 the fresh state, while maintaining tensile strain-hardening behavior in the hardened state, has been developed based on micromechanics and workability control. In the development concept of sprayable ductile mortar, micromechanics is adopted to properly select the matrix, fiber, and interface properties to exhibit strain hardening and multiple cracking behaviors in the composites. Within the pre-determined micromechanical constraints, the workability is controlled by optimizing mix proportions. A series of spray tests show the excellent pumpability and sprayability of the sprayable ductile mortar. Subsequent direct tensile tests demonstrate that the tensile performance of sprayed mortar is comparable to that of cast mortar, for the same mix design.

  • PDF

Application of a ductile connection system to steel MRF strengthened with hinged walls

  • Zhi Zhang;Yulong Feng;Dichuan Zhang;Zuanfeng Pan
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.487-498
    • /
    • 2024
  • Steel moment resisting frames (MRFs) typically have inter-story drift concentrations at lower stories during earthquakes as found from previous research. Hinged walls (HWs) can be used as structural strengthening components to force the MRFs deform uniformly along the building height. However, large moment demands are often observed on HWs and make the design of HWs non-economical. This paper proposes a method to reduce the moment demand on HWs using a ductile connection system between the MRFs and the HWs. The ductile connection system is designed with a yield strength and energy dissipation capacity, for the purpose of limiting the seismic forces transferred to the HWs and dissipating seismic energy. Nonlinear time history analyses were performed using 10 far-filed earthquakes at maximum considered earthquake level. The analysis results show that the proposed ductile connection system can reduce: (1) seismic moment demands in the HWs; (2) floor accelerations; (3) the connection force between HWs and MRFs.

구상흑연주철의 피절삭성과 내마모성에 미치는 Boron 첨가의 효과에 관한 연구 (A Study for the Effects of Boron Addition on Machinability and Wear Resistance of Ductile Cast Iron)

  • 최양진;이병엽;권혁무;백상한;박용진
    • 한국주조공학회지
    • /
    • 제14권1호
    • /
    • pp.75-81
    • /
    • 1994
  • It is very important to obtain high performance ductile iron by addition a small amount of alloying elements. In this study, to improve the characteristics of small piston ring casted from ductile iron melt a small amount of boron($0{\sim}0.008wt.%$) that is powerful carbide stabilizer was added in ductile iron, and inspected it`s effects on the microstructure, wear resistance, machinability and mechanical properties. The results obtained from this study are as follows. 1. As the amount of boron increased to 0.04wt.%, the machinability of ductile iron is increased, and if the amount is in excess of 0.04wt.% the machinability is decreased conversely. 2. The wear resistance of ductile iron is improved by boron addition. 3. The recommended ladle addition of boron amount ranges from 0.04wt.% to 0.06wt.% for the use of small piston ring.

  • PDF

3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향 (Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons)

  • 박정재;서갑성;권해욱
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

Analysis of Mechanical Properties in Steel Frame with Ductile Connections

  • Han, Minglan;Wang, Shuai;Wang, Yan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1464-1469
    • /
    • 2018
  • Steel frames with ductile connections have good seismic performance under strong earthquake, they are now popular for high seismic design. In order to simplify the process of numerical analysis of the steel frames with ductile connections, simplified connection models are introduced, two types of springs are placed in the simplified connection model, which can simulate deformation of the panel zone and members. 6-story-3-bay steel frames with ductile connections are simplified and carried out modal analysis, fundamental periods of the frames predicted by finite-element analysis for simplified steel frame models were compared to the results for actual frame models. 2-story steel frame with reduced beam section connections is simplified and carried out pseudo-static analysis, hysteretic curves and skeleton curves of the frame obtained by finite-element analysis for simplified steel frame model are compared to test results. The comparison show that the difference between them is small, it is reliable and effective to predict mechanical properties of the steel frame with ductile connection by finite-element analysis of simplified steel frame model.

ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능 (The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements)

  • 강대현;옥일석;윤현도;김재환;양일승
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.541-549
    • /
    • 2015
  • 본 논문에서는 고인성 시멘트 복합체(ECC)가 적용된 날개벽 요소의 면 접합방식에 따른 평가를 실시하였다. 또한 비내진상세를 갖는 RC 골조에 ECC날개벽 요소 보강하여 보강 유무에 따른 내진성능평가를 실시하였다. 면 접합 방법에 따른 거동 특성을 비교하기 위하여 2면 접합은 상 하부 보에 3면 접합은 상 하부 보 및 기둥에 접합하여 실험을 실시 하였다. 또한 비내진상세를 갖는 기존 구조체와의 일체로 거동하는 합성거동을 위해 3면 접합 방식으로 ECC날개벽 요소 보강을 실시하였다. ECC날개벽 요소 실험과 골조 실험은 점증되는 층간변위에 따라 2회씩 반복가력하여 실험을 진행하였다. 실험 결과 ECC 날개벽 요소 실험체의 경우 3면 접합이 2면 접합보다 우수한 내진성능 나타내었다. 각각의 실험체는 우수한 재료 특성으로 인하여 미세한 다수의 균열이 ECC날개벽 요소 전면에 폭넓게 분포하였다. 또한 보통 콘크리트와 달리 최대강도 이후 연성적인 거동을 나타내었으며, 이에 우수한 에너지소산능력을 나타내었다. ECC날개벽 요소를 보강한 실험체와 기존 골조에서는 ECC날개벽 요소 보강에 따른 최대강도 이후 연성적인 거동을 나타내었다. 이에 따라 에너지소산능력이 증가하였으며, 강성저하 또한 완만한 곡선을 나타내며 기존 골조보다 우수한 내진특성을 나타내었다. 이에 ECC 날개벽 요소의 보강이 비내진상세를 갖는 구조체에 우수한 내진 특성을 부여하는 판단된다.

고성능 다층 PVC pipe의 물성 (Physical Properties of High Performance Multilayered PVC Pipe)

  • 신용진;양경승;김성현
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.711-717
    • /
    • 1999
  • 다층구조 고분자 재료의 비결정성 영역에서의 파괴 역학 변형과정을 통하여 ductile 및 brittle층을 동시에 함유하는 다층 구조 가공물을 이용하여 단층 구조물과의 물성을 비교, 조사하였다. 그 결과 거의 유사한 유리 전이온도($T_g$) 및 동일한 dimension에서 다층 구조물의 충격강도가 단일층 구조물보다 현격히 높게 나타났으며, toughness는 약 2배 이상 향상됨을 알 수 있었다. 이것은 ductile층과 brittle층의 두께 비에는 임계값이 있으며, 그 이하에서는 brittle한 재료이더라도 ductile하게 나타날 수 있다는 toughening 원리가 본 실험의 측정 속도 영역 및 온도 범위에서 적용되고 있음을 의미한다. 또한 고속 균열이 진행하는 경우의 운동 응력(kinetic stress wave) 효과를 해석하기 위하여 충격파동 중첩의 원리(superposition principle of impact pulse)를 도입하였다. 그 결과 다층 구조물의 최종 toughness 향상은 ductile/brittle 비율의 최적설계에 있음을 알 수 있었다.

  • PDF

동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) - (Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) -)

  • 안규백;;;방한서
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo (Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum)

  • 방웅호;강춘식;박재현;권영각
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF