• 제목/요약/키워드: Duct design

Search Result 350, Processing Time 0.024 seconds

Layout design of the vehicle intake system for reducing the radiated noise (토출소음 저감을 위한 차량 흡기시스템 레이아웃 설계)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.443-446
    • /
    • 2006
  • For the satisfaction of the high engine performance and the low radiated sound pressure simultaneously, the duct length in the vehicle intake/exhaust system should be tuned carefully in the design and development stage of a vehicle. This study was concerned about the effects of intake duct length in clean and dirty sides on the radiated sound emitted from an inlet. An index derived from the existing prediction model of radiated sound pressure was employed to determine which duct was more influential to the radiated sound. Comparing the experimental and predicted results, we found that the change of dirty-side duct length caused a larger change than that in the clean side in the radiated sound level from a tested intake system.

  • PDF

COMPARISONS BETWEEN MEASURED AND COMPUTED FLUID FLOWS AND HEAT TRANSFER IN RECTANGULAR DUCT SYSTEM (사각 덕트 계통에서 유동과 열전달의 수치계산과 실험의 비교)

  • Yoon Y.H.;Kim K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.67-74
    • /
    • 2005
  • Fluid flow and heat transfer in rectangular duct system are measured and computed by commercial software of Star-CD for comparison between them. Three rectangular systems are investigated in this study. Those are a rectangular duct with 90 degree bended elbow, a rectangular duct with two branchs, and a circular cylinder in a rectangular duct. But heat transfer is studied only for last system. These investigations show us that the numerical solutions predict satisfactorily design factors (K-factor for the elbowed duct, distributions of flow rates into each branch from a duct, and Nusselt number around circular cylinder) even though there are some disagreements in velocity profiles and turbulent kinetic energy.

  • PDF

The Comparative Experiment of Duct Design Method with Equal Friction Loss Method and T-Method on a House Ventilation System (등압법과 T-Method법을 이용한 주택환기시스템 덕트설계법의 비교실험)

  • Joo, Sung-Yong;Kim, Kwang-Hyun;Choi, Seok-Yong;Yee, Jurng-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.99-104
    • /
    • 2006
  • Accurate flow rate distribution has been become a very important part for controling of air change rate since the introduction of house ventilation system. An inappropriate selection of fan due to Incorrect prediction of friction loss makes waste energy. The purpose of this study is to recognize applicability of T-Method at house ventilation system by comparing experiment with T-method, The result of this study is as follows Flow rate is small amount in a house, so duct size must be accurate. And duct design with Equal Friction Loss Method presented large error range. Equal friction loss method is not fit to applicate small amount air flow rate. T-Method predicts accurate flow rate comparatively in a house ventilation system. Error range was 3.5%.

  • PDF

A Study on Application of Distributor for Duct Design at House Ventilation System (주택용 환기시스템의 덕트설계를 위한 분배기 적용성 검토)

  • Yee, Jurng-Jae;Choi, Seok-Yong;Kim, Seok-Keun;Kim, Kwang-Hyun;Lee, Young-Woo;Kim, Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.770-775
    • /
    • 2007
  • Although these days application of heat recovery ventilation and improved kitchen ventilation system came into wide use in mixed-use residential buildings and exclusive residences, there are not enough ventilation systems except the local ventilation of kitchens and rest rooms. It is very important part to regulate and distribute correct air flow rate for controlling air change rate. The purpose of this study is to investigate the application of distributor at house ventilation system by comparing a duct system with out distributor and with distributor. The results of this study are as follows. (1) When using distributor though the size of duct diameter is reduced rapidly, the pressure loss doesn't rise largely. The pressure loss without distributor is 4.08 mmAq, the pressure loss with distributor 4.10 mmAq. (2) To use distributor can reduce materials of duct and secure enough ceiling space by reducing duct diameter. (3) Diameters and air flow paths of distributor on the design stage are important part for accurate air flow rate.

Aerodynamic Analysis and Design of Inline-Duct Fan (관류익형송풍기의 공력해석 및 설계)

  • Guo En-Min;Kim Kwang-Yong;Seo Seoung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

FLOW SIMULATION AROUND DUCTED-PROP (덕티드-프롭 유동해석)

  • Choi, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.264-271
    • /
    • 2007
  • The flow simulations around ducted-prop of tilt-duct aircraft were conducted in this study. For the investigation of aerodynamic characteristics of various configurations of duct, the axisymmetric flow calculation method combined with actuator disk model for prop were used. The rapid two-dimensional calculation and fast grid generation enable aerodynamic analysis for various duct configurations in a very short time and anticipated to active role in optimal configuration design of duct exposed to various flight modes. For the case of angle of attack or tilt angle, the three dimensional flow calculation is conducted using the three dimensional grid simply generated by just revolving the axisymmetric grid around center axis. Through the three dimensional calculation around duct, the aerodynamic effectiveness of duct as a lifting surface in airplane mode was investigated. The flow calculations around the control vane (wing) installed in the rear section of duct were conducted The aerodynamic data of wing were compared with the data of the ducts to evaluate the aerodynamic effectiveness of ducts.

  • PDF

Computational study on turbulent flows inside the duct of marine waterjet propulsor (선박 워터제트 추진기 덕트 내부의 난류유동 해석에 관한 연구)

  • Park Il-Ryong;Kim Wu-Joan;Ahn Jong-Woo;Kim Ki-Sup
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.181-184
    • /
    • 2002
  • CFD calculations are carried out to investigate the turbulent flow characteristics inside the duct of marine waterjet propulsors. The Reynolds-averaged Wavier-Stokes equations are solved using a finite-volume method. Standard $k-{\varepsilon}$ model and realizable $k-{\varepsilon}$ model are evaluated with an existing experimental data. Multi-block grid topology is adopted to describe the details of complex duct geometry. The present numerical methods are applied to the preliminary duct design of new waterjet propulsor system. Four different influx conditions are simulated to find out pressure and velocity distribution inside the intake duct. Attention is also paid upon the possible flow separation inside the waterjet duct. It is found that CFD tools can be used for the initial evaluation of inflow condition into the impeller of waterjet propulsor system.

  • PDF

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Static Structural Analysis on the Mechanical behavior of the KALIMER Fuel Assembly Duct

  • Kim, Kyung-Gun;Lee, Byoung-Oon;Woan Hwang;Kim, Young ll;Kim, Yong su
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.298-306
    • /
    • 2001
  • As fuel burnup proceeds, thermal gradients, differential swelling, and inter-assembly loading may induce assembly duct bowing. Since duct bowing affects the reactivity, such as long or short term power-reactivity-decrement variations, handling problem, caused by top end deflection of the bowed assembly duct, and the integrity of the assembly duct itself. Assembly duct bowing were first observed at EBR-ll in 1965, and then several designs of assembly ducts and core restraint system were used to accommodate this problem. In this study, NUBOW-2D KMOD was used to analyze the bowing behavior of the assembly duct under the KALIMER(Korea Advanced Liquid MEtal Reactor) core restraint system conditions. The mechanical behavior of assembly ducts related to several design parameters are evaluated. ACLP(Above Core Load Pad) positions, the gap distance between the ducts, and the gap distance between the duct and restraint ring were selected as the sensitivity parameter for the evaluation of duct deflection.

  • PDF

Multi-block Technique for a duct flow with multiple outlets (다출구 덕트 유동 해석을 위한 복합 격자망 해석방법의 제안)

  • Jeon,Yong-Deok;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1416-1425
    • /
    • 1996
  • A numerical method has been proposed to predict 3-dimensional flow in a duct system with multiple outlets. For the duct system, it is supposed that the pressure values are given at multiple outlets while the velocity profile is given at a inlet. To maintain the continuity of pressure distribution between main and branch duct, present method allows that the pressure value taken from analysis of branch duct can be converted to the main duct analysis. The result from present method which can handle the pressure boundary condition closely coincided with that from regular method which can handle the velocity boundary condition only. Furthermore the flow distribution from present method showed good agreement with that from the single block method. From the comparison of the present method with the total pressure method used for engineering duct design, 13% of discrepancy in pressure loss was shown between the main duct inlet and the branch duct outlet.