• Title/Summary/Keyword: Dual-coding theory

Search Result 12, Processing Time 0.018 seconds

Putting Images into Second Language: Do They Survive in the Written Drafts?

  • Huh, Myung-Hye
    • Journal of English Language & Literature
    • /
    • v.56 no.6
    • /
    • pp.1255-1279
    • /
    • 2010
  • Much has already been learned about what goes on in the minds of second language writers as they compose, yet, oddly enough, until recently little in the L2 research literature has addressed writing and mental imagery together. However, images and imaging (visual thinking) play a crucial role in perception (the basis of mental imagery), in turn, affecting language, thinking, and writing. Many theorists of mental imagery also agree that more than just language accounts for how we think and that imagery is at least as crucial as language. All of these demands, to be sure, are compounded for EFL students, which is why I investigate EFL students' writing process, focusing on the use of mental imagery and its relationship to the writing. First I speculate upon some ways that imagery influences EFL students' composing processes and products. Next, I want to explore how and whether the images in a writer's mind can be shaped effectively into a linear piece of written English in one's writing. I studied two university undergraduate EFL students, L and J. They had fairly advanced levels of English proficiency and exhibited high level of writing ability, as measured by TOEFL iBT Test. Each student wrote two comparison and contrast essays: one written under specified time limitations and the other written without the pressure of time. In order to investigate whether the amount of time in itself causes differences within an individual in imagery ability, the students were placed under strict time constraints for Topic 1. But for Topic 2, they were encouraged to take as much time as necessary to complete this essay. Immediately after completing their essays, I conducted face-to-face retrospective interviews with students to prompt them for information about the role of imagery as they write. Both L and J have spent more time on their second (untimed) essays. Without time constraint, they produced longer texts on untimed essay (149 vs. 170; 186 vs 284 words). However, despite a relatively long period of time spent writing an essay, these students neither described their images nor detailed them in their essays. Although their mental imagery generated an explosion of ideas for their writings, most visual thinking must merely be a means toward an end-pictures that writers spent in purchasing the right words or ideas.

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.