• Title/Summary/Keyword: Dual-Polarization Radar

Search Result 45, Processing Time 0.022 seconds

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

High power X-band SSPA Design using Gysel Power Combiner (Gysel 전력결합기를 이용한 고출력 X-band SSPA 설계)

  • Lee, Sang-Rok;Lim, Eun-Jae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • Necessity of compact X-band solid-state weather radar is required to provide weather data, which generate locally in a lot of Korea's mountainous area, rather than tube-type radar. Solid State Power Amplifier (SSPA) for using Dual-polarization method in weather radar is able to obtain desired high output by combining many low output power devices in parallel. Thus, Power combiner applying to high-output power amplifier has disadvantages such as path loss, ballast resistance problem by high frequency and high power, heat release. Therefore, In this paper we demonstrated the excellence of isolation, which is the result from modified Gysel power combiner. As a result, we designed X-band 250W solid state power amplifier with peak power 54dBm, 25% power efficiency for weather radar.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Areal average rainfall estimation method using multiple elevation data of an electromagnetic wave rain gauge (전파강수계의 다중 고도각 자료를 이용한 면적 평균 강우 추정 기법)

  • Lim, Sanghun;Choi, Jeongho;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.417-425
    • /
    • 2020
  • In order to predict and prevent hydrological disasters such as flood, it is necessary to accurately estimate rainfall. In this paper, an areal average rainfall estimation method using multiple elevation observation data of an electromagnetic wave rain gauge is presented. The small electromagnetic rain gauge system is a very small precipitation radar that operates at K-band with dual-polarization technology for very short distance observation. The areal average rainfall estimation method is based on the assumption that the variation in rainfall over the observation range is small because the observation distance and time are very short. The proposed method has been evaluated by comparing with ground instruments such as tipping-bucket rain gauges and a Parsivel. The evaluation results show that the methodology works fairly well for the rainfall events which are shown here.

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

Comparative Study of the Storm Centered Areal Reduction Factors by Storm Types (호우 형태에 따른 호우중심형 면적감소계수 비교)

  • Lee, Dongjoo;Hyun, Sukhoon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1219-1228
    • /
    • 2015
  • The Fixed Area ARFs (Area Reduction Factors) method has limitations in providing exact information about spatial distribution due to the lack of enough density of rain gauge stations. In this study the storm-centered ARF was evaluated between frontal and typhoon storm events utilizing radar precipitation. In estimating storm-centered ARFs, in order to consider the horizontal advection, direction, and spatial distribution of rain cells, the rotational angle of rainfall of each rainfall event and the optimum areal rainfall within the spatial rain cell envelope was taken into account. Compared with the frontal storm, the ARF of typhoon storm shows narrow range of variability. It is noted that the ARFs of frontal storm increases with the rainfall duration, but those of typhoon storm shows opposite pattern. As a result the typhoon ARFs appear greater than frontal ARFs for 1~3 hours of duration, but less for more than 6 hours of duration.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Communication and data processing strategy for the electromagnetic wave precipitation gauge system (전파강수계 시스템의 통신 및 자료처리 전략 개발)

  • Lee, Jeong Deok;Kim, Minwook;Park, Yeon Gu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.62-66
    • /
    • 2017
  • In this paper, we present the development of communication and data processing strategy for the electromagnetic wave precipitation gauge system. The electromagnetic wave precipitation gauge system is a small system for deriving area rainfall rates within 1 km radius through dual polarization radar observation at 24GHz band. It is necessary to take consider for measurement of accurate precipitation under limited computing resources originating from small systems and to minimize the use of network for the unattended operation and remote management. To overcome computational resource limitations, we adopted the fuzzy logic for quality control to eliminate non-precipitation echoes and developed the method by weighted synthesis of various rain rate fields using multiple radar QPE formulas. Also we have designed variable data packets rules to minimize the network traffic.

Development of dual-polarization radar rain rate equation using probability matching method (확률대응법을 이용한 이중편파레이더 강우추정 관계식 추정기법 개발)

  • Kim, Gildo;Ro, Yonghun;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.214-214
    • /
    • 2016
  • 이중편파 강우레이더는 차등반사도, 차등위상차, 비차등위상차 등 다양한 변수를 관측하여 호우의 공간적 규모, 호우를 구성하는 강수입자, 호우의 이동방향 등 종합적인 강우 정보를 제공한다. 이러한 이중편파레이더를 이용하면 단일편파레이더에 비해 보다 정량적인 강수 추정이 가능하다. 일반적으로 이중편파 강우레이더의 강우추정 관계식은 DSD 및 강우입자 모형을 기반으로 물리적으로 유도된다. 그러나 DSD는 호우 사상에 따라 그 양상이 다르며, 동일 호우 사상 내에서도 시공간적으로 변화가 크다. 이러한 DSD에 내포된 변동성은 결과적으로 레이더 강우에 큰 불확실성을 유발하게 된다. 이에 본 연구에서는 확률대응법을 이용하여 이중편파레이더의 강우추정 관계식을 추정하는 기법을 개발하고자 한다. 확률대응법은 실시간으로 강우추정 관계식의 매개변수를 추정하는 기법으로 단일편파레이더의 Z-R 관계식에 적용된 바 있다. 이러한 확률대응법을 이용하면 시공간적으로 변하는 DSD 등 호우사상의 개별적인 특징을 반영하여 호우사상별 강우추정 관계식의 매개변수를 실시간으로 결정할 수 있다. 따라서 본 연구에서는 이중편파레이더의 강우추정 관계식 중 R(KDP, Zdr), R(Zh, Zdr) 관계식을 위주로 매개변수를 이변량 확률대응법을 통해 추정하고, 기존의 강우추정 알고리즘 및 관계식의 레이더 강우 추정 결과와 비교를 통해 적용성을 평가하였다.

  • PDF