• Title/Summary/Keyword: Dual-Band Patch Antenna

Search Result 144, Processing Time 0.019 seconds

Design and Fabrication of Dual Linear Polarization Antenna for mmWave Application using FR-4 Substrate

  • Choi, Tea-Il;Yoon, Joong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.71-77
    • /
    • 2022
  • In this paper, we propose 1×2 array antenna with dual linear polarization characteristics for mmWave band operation. The proposed antenna is designed two microstirp feeding structure and FR-4 substrate, which is thickness 0.4 mm, and the dielectric constant is 4.3. The size of 1×2 array antenna is 2.33 mm×2.33 mm, and total size of array antenna is 13.0 mm×6.90 mm. From the fabrication and measurement results, bandwidths of 1.13 GHz (28.52~29.65 GHz) for port 1 and 1.08 GHz (28.45~29.53 GHz) for port 2 were obtained based on the impedance bandwidth. Cross polarization ratios are obtained from 7.68 dBi to 16.90 dBi in case of vertical polarization, and from 7.46 dBi to 15.97 dBi in case of horizontal polarization for input port 1, respectively. Also, cross polarization ratios are obtained from 8.59 dBi to 13.72 dBi in case of vertical polarization and from 9.03 dB to 14.0 dB in case of horizontal polarization for input port 2, respectively.

A Design of Dual-band Microstrip Patch Antenna in Multilayered Planner Structures for IMT-2000 systems (IMT-2000 주파수대역에서 이중공진 적층구조 마이크로스트립 패치 안테나의 설계 및 제작)

  • 오상진;윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.907-915
    • /
    • 2001
  • 본 논문에서는 차세대 이동통신인 IMT-2000 (하향: 1.885GHz∼2.025GHz) 주파수대역에서 동작하는 정사각형 적층구조 마이크로스트립 안테나를 설계 및 제작 측정하였다. 송/수신 주파수대역이 서로 상이한 IMT-2000 주파수대역에서 동작하도록 하기 위해 시뮬레이터를 사용하여 이중공진 안테나를 설계하였으며 최적화된 파라미터를 가지고 실제 제작 및 측정하였다. 측정된 결과는 다음과 같다. 공진주파수는 1.8475GHz, 2.2GHz에서 각각 나타났으며 대역폭은 각각 10.2%와 7.8%에 이르는 결과를 얻었다. 그리고 반사계수는 -18dB, -27dB로 나타났다. 이득은 시뮬레이터를 이용한 결과를 보면 8dB∼10dB의 높은 이득을 얻을 수 있음을 알 수가 있다.

  • PDF

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

Design of Antenna for Beam Scanning for Dual-Band base station (이중대역 기지국용 빔 스캔 안테나 설계)

  • Ko Jin-Hyun;Jang Jae-Su;Ha Jae-Kwon;Park Sae-Houn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.632-636
    • /
    • 2006
  • It is needed to use the beam scanning to control the cell coverage of the base station considering operation conditions, season, time period, radiation character and mobility of customers and vehicles for varied wireless communication service and quality improvement. This paper proposes a mobile antenna system which can obtain the characteristics of the beam scanning by controlling the directivity depending on the operation condition. Radiation block is made of 2 sub-array of $1\times3$ patched antennas for ITS of 5.8GHZ bandwidth with the gain of 13dBi, and of 2 sub-array of single patched antenna for WiBro of 2.3GHZ bandwidth with the gain of 12dBi. RF module is made of a switch, an amplifier, a PAD, a 3-Bit phase shifter, and a power divider. The system is able to control the beam tilting with electronic methode by using 3-bit phase shifter$(45^{\circ},\;90^{\circ},\;180^{\circ})$.

  • PDF