• Title/Summary/Keyword: Dual-Band

Search Result 844, Processing Time 0.026 seconds

Structural Modification of Crossed Planar Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics (ISM 2.45GHz/5.8GHz 이중대역 특성을 위한 십자형 평판 모노폴 안테나의 구조 변경)

  • Shim, Jaeruen;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • This study presents the structure design of antenna to have the dual band characteristics in a desired frequency band through the structural modification of an antenna structure. For the experiment, a wideband crossed planar monopole antenna was used. The target frequency band was set to ISM 2.45GHz/5.8GHz. To give the properties, an additional antenna element was added to the crossed planar monopole antenna, which is a main body of the antenna. And then structural adjustment parameter was set to change the length(shape) of the antenna. Various simulations were conducted to find the dual band characteristics in the desired frequency band. The simulations brought forth the antenna bandwidth above the normal values for ISM 2.45GHz/5.8GHz. The structural adjustment parameter introduced in this study for structural modification of an antenna can be useful in developing an antenna featured with dual band(multiband) characteristics.

A Compact LTCC Dual-Band WLAN Filter using Two Notch Resonators

  • Park, Jun-Hwan;Cheon, Seong-Jong;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.168-175
    • /
    • 2013
  • This paper presents compact dual-band WLAN filter and filter module. They were developed by embedding all of the passive lumped elements into a LTCC substrate. In order to reduce the size/volume of the filter and avoid EM parasitic couplings between the passive elements, the proposed filter was designed using a 3rd order Chebyshev circuit topology and J-inverter transformation technology. The 3rd order Chebyshev bandpass filter was firstly designed for the band-selection of the 802.11b and was then transformed using finite transmission zeros technologies. Finally, the dual-band filter was realized by adding two notch resonators to the 802.11b filter circuit for the band-selection of the 802.11a/g. The maximum insertion losses in the lower and higher passbands were better than 2.0 and 1.3 dB with minimum return losses of 15 and 14 dB, respectively. Furthermore, the filter was integrated with a diplexer to clearly split the signals between 2 and 5 GHz. The maximum insertion and minimum return losses of the fabricated module were 2.2 and 14 dB at 2.4 - 2.5 GHz, and 1.6 and 19 dB at 5.15 - 5.85 GHz, respectively. The overall volume of the fabricated filter was $2.7{\times}2.3{\times}0.59mm^3$.

A Novel Design Method of Microstrip Dual-Band Filter Using PI-SIR and OLRR (PI-SIR과 OLRR을 이용한 마이크로스트립 이중 대역 여파기의 설계 방법)

  • Lim, Ji-Eun;Lee, Jea-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.245-251
    • /
    • 2011
  • In this paper, dual-band bandpass filter by using Pseudo-Interdigital Stepped-Impedance Resonator(PI-SIR) and Open-Loop Ring Resonator(OLRR) is proposed. The first passband and second passband are formed by PI-SIR and the second passband is reinforced by an OLRR. In a PI-SIR the first band and second band are easily and exactly adjusted by characteristic impedance ratio and electrical length ratio. The proposed design method may be confirmed to be useful from fabricated and measured results for dual-band bandpass filter operated at 2.45 GHz and 5.8 GHz.

Design of Compact Dual-band Slot Antenna (소형 이중 대역 슬롯 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.61-62
    • /
    • 2015
  • In this paper, a design method for a dual-band compact slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside of a rectangular slot of the proposed antenna for dual-band operation. Final design parameters are obtained by analyzing the effects of the gap between the SRR conductor and slot, and the width of the SRR conductor on the input reflection coefficient and gain characteristics. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is designed on an FR4 substrate with a dimension of 30 mm by 30 mm.

  • PDF

Design of Dual Band Microstrip H-shaped Patch Antenna using Shorting Pin (단락핀을 이용한 이중대역 마이크로스트립 H형 패치 안테나 설계)

  • Chang, Se-Wook;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1835-1840
    • /
    • 2008
  • In this paper, a dual band H-shaped microstrip patch antenna is designed for RFID application. Using shorting pin and H shaped for dual resonators and control dual frequency independently. The antenna shows a good performance at the frequency, 912MHz and 2.45GHz for the radiation characteristic and input impedance matching, as well. The reflection is lower than -10dB and a good directivity higher than 3dB is achieved for both frequency.

Design and Implementation of 2.4/5 GHz Dual-Band Plate Type Antenna for Access Point of Wireless LAN (2.4/5 GHz 무선 LAN 액세스 포민트용 이중 공진 판형 안테나 설계 및 구현)

  • Lee Won-Kew;Son Ji-Myoung;Han Jun-Hee;Yang Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.401-407
    • /
    • 2006
  • In this paper, we present a small-sized and light weighted dual-band antenna for an access point of 2.4/5 GHz dual-band WLAN(Wireless Local Area Network). The antenna for WLAN should show the characteristic of omni-directional radiation pattern. First, to obtain the omni-directional radiation pattern the proposed dual-band antenna has an orthogonal inverted triangular type element at the center and locates four resonating elements symmetrically around it. Also, for the purpose of easy manufacturing and miniaturization of the antenna, we changed the central element which had the orthogonal inverted triangular type structure into the plate type. Measured $S_{11}$ for the proposed dual-band plate type antenna showed characteristic which was less then -12.8 dB for WLAN frequency bands. Measured results for the maximum gain showed 3.17 dBi at 2.44 GHz, 5.38 dBi at 5.77 GHz with omni-directional radiation pattern. The implemented antennas showed applicable performances for the access point of WLAN.

Dual-Wideband Bandpass Filter Using Distributed Composite Right/Left-Handed Transmission Line Quad-Mode Resonators (분산 CRLH 전송선로 4중 모드 공진기를 이용한 이중-광대역 대역통과 여파기 설계)

  • Sung, Gyuje;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.84-89
    • /
    • 2017
  • This paper presents a dual-wideband bandpass filter (BPF) with high band-to-band isolation and skirt selectivity using distributed composite right/left-handed (CRLH) transmission line (TL) quad-mode resonators (QMRs). The results of the proposed distributed CRLH TL unit cell analysis are used to establish the scattering parameters and the resonance frequencies of the QMR constituting the dual-wideband BPF. A novel dual-wideband bandpass filter is designed and fabricated, using the derived scattering characteristics. The measured results show that the fabricated dual-wideband bandpass filter has an insertion loss of less than 1.08dB in the lower band, and of 2.01dB in the upper band, a bandwidth of 2.8-5.52GHz and 9.68-12.26GHz, and a band-to-band isolation of more than 38dB, from 6.34-8.42GHz.

Digital Predistortion for Concurrent Dual-Band Transmitter Based on a Single Feedback Path (이중대역 송신 시스템을 위한 단일 피드백 디지털 전치왜곡 기법)

  • Lee, Kwang-Pyo;Yun, Min-Seon;Jeong, Bae-mook;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.499-508
    • /
    • 2017
  • A new digital pre-distortion technique to linearize power amplifier (PA) is proposed for concurrent dual-band transmitters. In the conventional dual-band DPD techniques, two independent dual-feedback paths are required to compensate nonlinear cross-products between different bands as well as the nonlinear self-products of each band's own signal. However, it increases hardware complexity and expense. In this paper, we propose a new DPD method requiring only a single feedback path. In this new structure, the proposed technique first estimates the dual-band PA characteristics using the single feedback path. The DPD parameters are then extracted from the estimated PA characteristics. The DPD performance of the proposed method is validated through computer simulation. According to the results, the proposed technique can achieve comparable performance to the conventional two feedback DPD with significantly reduced hardware complexity.

Dual-Band Power Divider Using CRLH-TL (CRLH 전송 선로 구조를 이용한 이중 대역 전력 분배기)

  • Kim, Seung-Hwan;Sohn, Kang-Ho;Kim, Ell-Kou;Kim, Young;Lee, Young-Soon;Yoon, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.837-843
    • /
    • 2008
  • This paper proposes a power divider based on meta-material structure with dual-band operation. The meta-material structures of left-hand characteristic are constituted of series capacitors and shunt inductors, but they have parasitic series inductance and shunt capacitance effects. There is represented the composite right/ left-handed transmission line (CRLH-TL) model. When the power divider is implemented by using the CRLH-TL, the power divider can operate dual band. To verify the power divider with dual band, we are implemented to operate dual-band that is 0.88 GHz and 1.67 GHz. The characteristics of divider have the return loss less than each 21.0 dB and 15.8 dB and the insertion loss better than 3.83 dB and 3.64 dB at each frequency. Also, the output phase difference is $3{\sim}6^{\circ}$.