• Title/Summary/Keyword: Dual templating

Search Result 3, Processing Time 0.017 seconds

Synthesis of KIT-1 Mesoporous Silicates Showing Two Different Macrosporous Strucrtues; Inverse-opal or Hollow Structures (거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조)

  • Baek, Youn-Kyoung;Lee, Jung-Goo;Kim, Young Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • We report a facile method for preparing KIT-1 mesoporous silicates with two different macroporous structures by dual templating. As a template for macropores, polystyrene (PS) beads are assembled into uniform three dimensional arrays by ice templating, i.e., by growing ice crystals during the freezing process of the particle suspension. Then, the polymeric templates are directly introduced into the precursor-gel solution with cationic surfactants for templating the mesopores, which is followed by hydrothermal crystallization and calcination. Later, by burning out the PS beads and the surfactants, KIT-1 mesoporous silicates with macropores are produced in a powder form. The macroporous structures of the silicates can be controlled by changing the amount of EDTANa4 salt under the same templating conditions using the PS beads and inverse-opal or hollow structures can be obtained. This strategy to prepare mesoporous powders with controllable macrostructures is potentially useful for various applications especially those dealing with bulky molecules such as, catalysis, separation, drug carriers and environmental adsorbents.

Highly Ordered Porous Silica Adsorbent with Dual Pore Size Regime for Bulky VOC Gas Sensing

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.181-184
    • /
    • 2013
  • Highly ordered porous materials having mesopores in the walls of macropores showed improved adsorption dynamics results for VOC molecules, especially bulky molecules. These meso/macroporous mataerials were synthesized by the dual templating method, and mesopore and macropore size were controlled by adjusting the templates for each pore size regime. In the case of adsorption and desorption of small VOC molecules (toluene), although meso/macroporous MCM-41 with smaller mesopore size showed improved results, meso/macroporous SBA-15 with larger mesopore size was not improved regardless of the existence of macropores, since there was no limitation of movement through the larger mesopore. However, the adsorption dynamics of bulky VOC molecules (p-xylene) over meso/macroporous SBA-15 were drastically improved by increasing the macropore size.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.