• Title/Summary/Keyword: Dual priming oligonucleotide

Search Result 3, Processing Time 0.015 seconds

Dual priming oligonucleotide system for the multiplex detection of tuberculosis in Hanwoo

  • Shin, Jong-Bong;Park, Nam-Yong;Kim, Yong-Hwan;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.527-532
    • /
    • 2007
  • In present study, we described the reliability of the dual priming oligonucleotide (DPO) multiplex polymerase chain reaction (PCR) for the detection of Mycobacterium tuberculosis complex (MTC) and non-Mycobacterium tuberculosis (NMT) in blood samples of the Korea native cattle, Hanwoo. Among 340 samples 22 (6.5%) were positive in using DPO multiplex PCR, 21 (6.2%) were positive in PCR. The relative agreement between 2 tests was 99.7%, and the agreement quotient (kappa), was 0.95 (excellent). In these results, we demonstrated the successful application of DPO multiplex PCR for the diagnosis of bovine tuberculosis in Hanwoo. Multiplex PCR, using DPO primers, can be useful for the simple diagnosis of bovine tuberculosis in bovine blood samples.

Diagnostic testing for Duchenne/Becker Muscular dystrophy using Dual Priming Oligonucleotide (DPO) system (Dual Priming Oligonucleotide (DPO) system을 이용한 듀시엔/베커형 근이영양증 진단법)

  • Kim, Joo-Hyun;Kim, Gu-Hwan;Lee, Jin-Joo;Lee, Dae-Hoon;Kim, Jong-Kee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Purpose : Large exon deletions in the DMD gene are found in about 60% of DMD/BMD patients. Multiplex PCR has been employed to detect the deletion mutation, which frequently generates noise PCR products due to the presence of multiple primers in a single reaction as well as the stringency of PCR conditions. This often leads to a false-negative or false-positive result. To address this problematic issue, we introduced the dual primer oligonucleotide (DPO) system. DPO contains two separate priming regions joined by a polydeoxyinosine linker that results in high PCR specificity even under suboptimal PCR conditions. Methods : We tested 50 healthy male controls, 50 patients with deletion mutation as deletion-positive patient controls, and 20 patients with no deletions as deletion-negative patient controls using DPO-multiplex PCR. Both the presence and extent of deletion were verified by simplex PCR spanning the promoter region (PM) and 18 exons including exons 3, 4, 6, 8, 12, 13, 17, 19, 43-48, 50-52, and 60 in all 120 controls. Results : DPO-multiplex PCR showed 100% sensitivity and specificity for the detection a deletion. However, it showed 97.1% sensitivity and 100% specificity for determining the extent of deletions. Conclusion : The DPO-multiplex PCR method is a useful molecular test to detect large deletions of DMD for the diagnosis of patients with DMD/BMD because it is easy to perform, fast, and cost-effective and has excellent sensitivity and specificity.

  • PDF

An Economic Modeling Study of Helicobacter pylori Eradication: Comparison of Dual Priming Oligonucleotide-Based Multiplex Polymerase Chain Reaction and Empirical Treatment

  • Gweon, Tae-Geun;Kim, Joon Sung;Kim, Byung-Wook
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.648-654
    • /
    • 2018
  • Background/Aims: Dual priming oligonucleotide-based multiplex polymerase chain reaction (DPO-based PCR) can detect the presence of clarithromycin resistance without culture. The aim of this study was to investigate the cost-effectiveness of DPO-based PCR for Helicobacter pylori eradication. Methods: From 2015 to 2016, medical records of patients who received H. pylori eradication therapy were analyzed. Patients were divided into two groups: tailored group patients who were treated based on DPO-based PCR and empirical group patients. Eradication rate and medical cost, including diagnostic tests, eradication regimens, and $^{13}C$-urea breath tests, were compared between the two groups. Cost for one successful eradication was calculated in each group. The expected cost of eradication for empirical treatment was investigated by varying the treatment duration and eradication rate. Results: A total of 527 patients were analyzed (tailored group 208, empirical group 319). The eradication success rate of the first-line therapy was higher in the tailored group compared to that in the empirical group (91.8% vs 72.1%, p<0.01). The total medical cost for each group was $114.8{\pm}14.1U.S.$ dollars (USD) and $85.8{\pm}24.4USD$, respectively (p<0.01). The total medical costs for each ultimately successful eradication in the tailored group and in the empirical group were 120.0 USD and 92.4 USD, respectively. The economic modeling expected cost of a successful eradication after a 7- or 14-day empirical treatment was 93.8 to 111.4 USD and 126.3 to 149.9 USD, respectively. Conclusions: Based on economic modeling, the cost for a successful eradication using DPO-based PCR would be similar or superior to the expected cost of a successful eradication with a 14-day empirical treatment when the first-line eradication rate is ${\leq}80%$.