• Title/Summary/Keyword: Dual current control

Search Result 210, Processing Time 0.028 seconds

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

A Study of PWM Inverter for Field Control on Large Synchronous Generator (대형 동기 발전기 계자제어를 위한 PWM 인버터에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.958-959
    • /
    • 2006
  • For the life extension of Jeju thermal power plant, digital PWM excitation system was replaced by KEPRI. This system consist of TMR(Triple Modular Redundant) controller, dual PWM power inverter for field current control and MMI etc. The Performance test during the commissioning verified the reliability of digital PWM excitation system and recently, this system has been operated successfully.

  • PDF

Mode Control Design of Dual Buck Converter Using Variable Frequency to Voltage Converter (주파수 전압 변환을 이용한 듀얼 모드 벅 변환기 모드 제어 설계)

  • Lee, Tae-Heon;Kim, Jong-Gu;So, Jin-Woo;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.864-870
    • /
    • 2017
  • This paper describes a Dual Buck Converter with mode control using variable Frequency to Voltage for portable devices requiring wide load current. The inherent problems of PLL compensation and efficiency degradation in light load current that the conventional hysteretic buck converter has faced have been resolved by using the proposed Dual buck converter which include improved PFM Mode not to require compensation. The proposed mode controller can also improve the difficulty of detecting the load change of the mode controller, which is the main circuit of the conventional dual mode buck converter, and the slow mode switching speed. the proposed mode controller has mode switching time of at least 1.5us. The proposed DC-DC buck converter was implemented by using $0.18{\mu}m$ CMOS process and die size was $1.38mm{\times}1.37mm$. The post simulation results with inductor and capacitor including parasitic elements showed that the proposed circuit received the input of 2.7~3.3V and generated output of 1.2V with the output ripple voltage had the PFM mode of 65mV and 16mV at the fixed switching frequency of 2MHz in hysteretic mode under load currents of 1~500mA. The maximum efficiency of the proposed dual-mode buck converter is 95% at 80mA and is more than 85% efficient under load currents of 1~500mA.

The Modified Control Method of Boost Converter for PV System in DCM (DCM에서 PV시스템용 부스트 컨버터의 개선된 제어방식)

  • Lee, Young-Jin;Han, Dong-Hwa;Byen, Byeong-Joo;Choi, Jung-Muk;Bayasgalan, Dugarjav;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.297-304
    • /
    • 2013
  • This paper presents a improved control technique to overcome disadvantage when the inductor current of boost converter in PV system becomes DCM(Discontinuous Conduction Mode) due to the low insolation. MPPT(Maximum Power Point Tracking) output reference voltage could not be exactly followed by conventional dual-loop PI control method used typically because of the error between the actual current and measured current. Therefore, in this paper, Hybrid controller that changes the control method in DCM and CCM(Continuous Conduction Mode), and single state feedback controller are used to compensate that problem. The proposed control technique was verified by simulation using PSIM 9.0 and experiments.

The Difference of Efficacy for Oral Hypoglysemic Pharmacotherapy Based on Sasang Constitutional Medicine Among Type II Diabetes Mellitus Patients in Korea (제 2형 당뇨병 환자에서 사상체질에 따른 경구 혈당강하요법의 치료 반응성 및 사용 패턴 평가)

  • Kim, Ji Yeon;Lee, Myung Koo;Kim, Jung Tae;Lim, Sung Cil
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Although Korean patients with type 2 diabetes mellitus (T2DM) are generally treated by western medicine, many of them strongly believe in the traditional oriental Sasang constitutional classification and depend on it for food, health supplements, and oriental medicines decision making. Sasang constitutional classification is a part of traditional Korean medicine that divides people into four constitutional types (Tae-Yang: TY, Tae-Eum: TE, So-Yang: SY, and So-Eum: SE), which differ in inherited characteristics such as appearance, personality traits, susceptibility to diseases, and drug responses. It is recommended for T2DM patients to control their blood glucose very well from early stages with drugs and diet. However, many T2DM patients respond differently to their drugs, even though they receive the same medicine. Therefore, the present study investigated whether Sasang constitutional type can explain the therapeutic differences between oral hypoglycemic agents (OHAs) therapy (mono, dual and triple drug therapy). Patients of 618 with T2DM diagnosis and Sasang constitutional type known who received both western and oriental medicine treatment in a hospital between April 2006 and April 2013 retrospectively studied. HbA1c (%) and blood glucose (mg/dl) levels before OHAs therapy and 3 month after were collected for metformin (MET) or sulfonylurea (SU) monotherapy, MET+SU dual therapy, MET+except SU (where was either alpha-glucosidase inhibitor, dipeptidyl peptidase-4 inhibitor, meglitinide or thiazolidinedione) dual therapy, and triple therapy, according to Sasang constitutional type. For statistical analysis, ANOVA was used and paired t-test by SPSS 19.0 where P values less than 0.05 were considered statistically significant. Pattern was similar levels of HbA1c and blood glucose and which was decreased in order of mono, MET+SU dual, MET+except SU dual and triple therapy. In all patients comparison, for the So-yang (SY) constitutional type, either monotherapy was less effective; for Te-eum (TE) type, MET+SU dual therapy was less effective while MET+except SU dual therapy was more effective and the triple therapy was less effective; and for So-eum (SE) type, the triple therapy was more effective. For the management of TE type it is recommended to use drugs except SU when dual therapy is needed, restrict triple therapy and consider dual and insulin therapy; for SY type it is recommended to follow current guidelines; and for SE type it is advisable to skip dual therapy and start the triple therapy early. Finally, the therapeutic response to OHAs is different among Korean T2DM patients with different Sasang constitutional types. Taken together, the choice of effective OHAs therapy for each type is necessary in order to minimize the poor control of blood glucose level, the risk of complications, and the costs from a failure of therapy.

Algorithm Development for Improving Output Characteristics of Thyristor Dual Converter with AC Input Voltage Variation (교류 입력 전압 변동에 따른 사이리스터 듀얼 컨버터의 출력 특성 개선을 위한 알고리즘 개발)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1437-1443
    • /
    • 2017
  • Electric energy is consumed or regenerated according to an operation of electric rail cars in urban railway power substations. A thyristor dual converter system is used to deal with the electric energy. Since the AC input voltage of power substations is $22.9kV{\pm}10%$, the magnitude of the AC voltage fluctuates according to load conditions, so the secondary side voltage of the DDY transformer also fluctuates. In the thyristor dual converter, the response characteristics of the DC output voltage and the DC output current are changed based on an initial firing angle in the cross mode conversion between the forward mode and the reverse mode. Therefore, this paper proposes the initial firing angle tracking algorithm considering fluctuation of the AC input voltage. The effectiveness of the proposed algorithm is verified by a simulation compared with the conventional algorithm.

LCD Backlight Inverter Drive IC (액정디스플레이 후광 인버터 구동 IC)

  • Jeong, Dong-Youl;Jang, Cheon-Seob;Lee, Seung-Zoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2568-2571
    • /
    • 2002
  • A LCD backlight inverter control IC based on the piezoelectric transformer (PZT) for Cold Cathode Fluorescent Lamp (CCFL) lighting is proposed. It is indeed a variable frequency, variable duty (VFVD) controller having dual feedback control loops for achieving both the regulation of lamp current and the maximum efficiency. The PWM controller regulates the lamp current, while the PLL controller tunes the operating frequency to the frequency that the efficiency of the combined LC-PZT resonator becomes maximum. The mixed PLL/PWM control technique lets the backlight inverter operate at the maximum efficiency in spite of the variation of component and environment. The controller features include a protection for an open or broken lamps, and an open lamp regulation.

  • PDF

An Charge-Recycling Technique with Dual Outputs for Field Color Sequential applied in the RGB LED Backlight

  • Yang, Chih-Yu;Hsieh, Chun-Yu;Chen, Ke-Horng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1088-1091
    • /
    • 2009
  • A boost converter with charge-recycling technique fabricated by $0.25{\mu}m$ CMOS BCD process can provide different supply voltages to drive series RGB LEDs in sequence for reducing the power consumption on the constant current generator. The proposed technique stores and restores extra energy to improve the efficiency, as well as enhances the reference tracking response. Experimental results show that the period of reference-tracking response can be improved. When the load current is 100mA, the periods of reference down-tracking and uptracking are smaller than $10{\mu}s$ and $20{\mu}s$, respectively. Experimental results demonstrate fast and efficient reference tracking performance is achieved.

  • PDF

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.