• 제목/요약/키워드: Dual Servo

검색결과 93건 처리시간 0.033초

수정된 외란관측기를 이용한 광 디스크 드라이브 서보 시스템 (An Optical Disk Drive Servo System Using a Modified Disturbance Observer)

  • 정종일;김무섭;오경환;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.484-491
    • /
    • 2005
  • Using a disturbance observer is effective in enhancing the performance of dynamic system in presence of disturbances. Although various types of disturbance observers have been proposed to improve sensitivity of systems, there exist poor transient responses due to cross-couplings among disturbance observer loops. In this paper, dual disturbance observer (DOB) is proposed to reduce the effects of the cross-couplings. A different type of loop transfer function is proposed for external disturbance observer. While improving the sensitivity function by adding external DOB, it also provides improved complementary sensitivity function. The proposed dual DOB is applied to a commercial optical disk drive tracking system. It is shown that the dual DOB is an effective method in rejecting the effect of disturbance as well as improving the tracking performance.

회전모멘트 힌지 설계에 따른 캔틸레버형 횡방향 구동 Fast Tool Servo 연구 개발에 관한 고찰 (A Study on the Development of a Cantilever & Swing-Type Fast Tool Servo with Rotational Moment Hinge Design)

  • 이승준;정재호
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.43-49
    • /
    • 2020
  • The growth of the AR/VR market due to the advent of the 4th Industrial Revolution begins with the development of the display industry. The development of OLED and flexible displays is further accelerated by the development of R2R technology. Micro-processing technology using a fast tool servo (FTS), the core technology in R2R processes, is making technological progress in increasingly diverse ways. This paper proposes a method to develop an FTS for horizontal driving and presents this method through experiments and analyses. To develop a swing-type FTS based on a seesaw motion, a rotational moment hinge structure was designed for each type, and research was conducted to determine an effective design method. A cantilever-based swing-type FTS was developed in two variations: one with single-side hinges and another with dual-side hinges. The parameters in the design of the swing-type FTS are rotational moment, natural frequency, and material selection. In conclusion, an FTS with a single-side hinge demonstrates the high performance required for micro processing.

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

초진공용 2축 대변위 나노 스테이지 개발 (Development of 2-Axes Linear Motion System with Nano resolution for UHV)

  • 강은구;홍원표;이석우;정문성;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1871-1874
    • /
    • 2005
  • The direct write FIB technology has several advantages over contemporary micro-machining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}m$. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1x10^{-7}$ torr. This paper presents the discussion and results of CAE of the 2 axes stages. we have estimated the stable static and dynamic characteristics for dual servo system. Therefore the 2 axes stages developed and future work are introduced at the end of the paper.

  • PDF

리소그라피 장비에서 xy${\theta}$미세구동기의 최적 설계 및 제어 (Optimal Design and Control of xy${\theta}$ Fine Stage in Lithography System)

  • 김동민;김기현;이성규;권대갑
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.163-170
    • /
    • 2002
  • The quality of a precision product, in general, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the work piece in the process. Recently the positioning accuracy level has reached to the level of submicron and long range of motion is required. For example, for 1 GDARM lithography, 20nm accuracy and 300mm stroke needs. This paper refers to the lithography stage especially to fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM (Linear DC Motor) is used and for fine one VCM is used. In this study, we propose the new structure of VCM for the fine actuator. It is 3 axis precision positioning stage for an aligner system. After we perform the optimal design of the stage to obtain the maximum force, which is related to the acceleration of the stage to accomplish throughput of product. And we controlled this fine stage with TDC. So we obtained 50nm resolution. So later more works will be done to obtain better accuracy.

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

가변부하를 갖는 직류 서보 전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계 (Design of Neuro-Fuzzy Controller for Velocity Control of DC Servo Motor with Variable Loads)

  • 김상훈;강영호;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.513-515
    • /
    • 1999
  • In this paper, Neuro-Fuzzy controller which has the characteristic of Fuzzy control and artificial Neural Network is designed A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which are created by the expert. In order to adaptivity, the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in Neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of Dual mode Method. To test the effectiveness of the algorithm designed above the experiment for DC servo motor with variable load as variable load plant is implementation.

  • PDF

최소차원 관측기를 이용한 평면 X-Y 스테이지의 나노 위치제어 (Nano Position Control of Plane X-Y Stage Using Minimum Order Observer)

  • 김재열;윤성운;곽이구;안재신;한재호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.180-185
    • /
    • 2003
  • Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modem control theory, dual servo algorithm is developed by minimum order observer, and stability priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF