• 제목/요약/키워드: Dual Rotor Motor

검색결과 22건 처리시간 0.027초

다자유도 구동 스피리컬 모터의 토크리플 저감 설계에 관한 연구 (A Study on Torque Ripple Reduction of the Multi-degree of Freedom Operated Spherical Motor)

  • 강동우;이주
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1541-1543
    • /
    • 2013
  • This paper presents a spherical motor which can control in multi-degree of freedom operation. The spherical motor has been researched by many types of structure. Thhis paper shows a spherical shaped airgap and surfaced permanent magnets. Especially, The motor consists of dual rotor cores. Unlike a cylindrical motor, the spherical motor design can be considered with azimuth direction on spherical coordinates. Therefore the permanent magnet surfaced on the rotor need to be designed optimally in order to generate a sinusoidal magnetic flux density in the airgap. This paper presents results of optimal design for reducing torque ripple of the multi-degree of freedom spherical motor.

영구자석회전자를 가진 유도전동기 (Induction Motor with Permanent Magnet Rotor)

  • 한승도;신현정;안준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.120-122
    • /
    • 2004
  • In this Paper, high efficiency dual air-gap induction motor with permanent magnet rotor is described. The finite element method is used to design the rotor and magnet. And we presented the analysis, construction, experimental results of prototype single phase induction motor with permanent magnet rotor for air-conditioner fan motor.

  • PDF

두 장의 원판형 회전자를 갖는 로렌츠형 자기 베어링 내장 전동기의 개발 (Development of Lorentz Force Type Integrated Motor-Bearing System in Dual Rotor Disk Configuration)

  • 박성호;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.935-940
    • /
    • 2005
  • In this paper, dual rotor disk configuration with a coreless stator is proposed for the Lorentz force type integrated motor bearing system. An experimental compensation for the effects of high order harmonics is performed using the digital controller of the experimental setup. The runout profile and rotor unbalance are also identified by the extended influence coefficient method. The experimental results confirm that this compensation method effectively attenuates the rotor vibration all over the operating range of rotational speed.

  • PDF

Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정 (Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel)

  • 최원연;박계도;이장명
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

두 장의 원판형 회전자를 갖는 로렌츠형 자기 베어링 내장 전동기의 개발 (Development of Lorentz Force Type Integrated Motor-bearing System in Dual Rotor Disk Configuration)

  • 이종원;박성호
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1045-1052
    • /
    • 2005
  • Tn this paper. dual rotor disk configuration with a coreless stator is proposed for the Lorentz force type integrated motor hearing system. An experimental compensation for the effects of high order harmonics is performed using the digital controller of the experimental setup. The runout profile and rotor unbalance are also identified by the extended influence coefficient method. The experimental results confirm that this compensation scheme effectively attenuates the rotor vibration all over the operating range of rotational speed.

이중운전조건을 고려한 외전형 SRM의 구동특성 (Drive Characteristics of Outer-rotor Type SRM Considering Dual Operating Modes)

  • 안진우
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.903-909
    • /
    • 2014
  • As a direct drive type washing machine requires two operating modes, washing and spinning modes, a design of the motor with high efficiency in each mode is not applicable to a conventional procedure. To achieve the requirements, a multi-pole outer rotor type switched reluctance motors are considered. To select a suitable motor type for the application, a static toque is compared based on the FEM analysis. The selected type is obtained for high and wide toque than other types of the motor. Further, the pole shape and arc are optimized to meet the required torque and torque ripple. To verify the proposed structure, the prototype is designed and manufactured. And the simulation and experimental results verify the validity of the proposed structure.

하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구 (A Study on the Vibration Characteristics of HDD Spindle Motor)

  • 장건희;한재혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF

단일 인버터 기반 두 대의 영구자석 동기전동기 병렬운전에서 전력각을 이용한 속도제어기법 (Parallel Sensorless Speed Control using Power Angle for Dual SPMSMs Fed by a Single Inverter)

  • 김경훈;윤철;권우현
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1481-1487
    • /
    • 2017
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position. consequently, the position sensor is deemed essential for finding the rotor position. In this paper, we proposed a method that decides the magnitude of the load from the power angle of two motors due to the load variation and selects the motor to control through the sign function for the sensorless speed control without the position sensor. The results of simulation and experiment conducted verify the efficacy of the proposed method.

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter

  • Kim, Chang-Bum;Yun, Chul;Yoon, Byung-Keun;Cho, Nae-Soo;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1048-1057
    • /
    • 2015
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors (SPMSMs) fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position; consequently, the position sensor is deemed essential for finding the rotor position. The parallel sensorless speed control method proposed in this paper uses no position sensor, instead it compares the flux-axis current from the connection between the back-EMF for torque angle and current in unbalanced load conditions. The results of simulation and experiment conducted verify the efficacy of the proposed method.