• Title/Summary/Keyword: Dual Phase Steel

Search Result 126, Processing Time 0.027 seconds

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

The influence of microstructure size on the tensile fracture behavior or dual phase steel (복합조직망의 파괴거동에 미치는 미시조직크기의 영향)

  • ;Kim, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 1981
  • A study has been made of the fracture strength and ductility of the dual phase microstructure, in which the martensitic phase encapsulated islands of ferritic phase in association with the cleavage cracking of ferrite grains. It was found the final fracture occured in a brittle manner, starting from the Griffith crack which consisted of the cleavage crack in the ferrite grains and the cracks in second phase. Furthermore, the effects of the ferrite grain sizes on the Griffith crack were also discussed.

The Effect of The Second Phase Morphology on the Micro And Macro Fracture Behaviour of Dual Phase Steel (鋼 의 微視 및 巨視的 破壞擧動 에 미치는 第二相形態 의 영향)

  • 김정규;송삼홍;이장현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.239-246
    • /
    • 1982
  • The effect of the second phase morphology on the fracture ductility of dual phase steel was studied by means of tensile tests carried out room temperature. In this case the second phase morphology is characterized by two kinds; one is the MEF microstructure in which martensite encapsulated islands of ferrite, the other is the FEM microstructure in which ferrite encapsulated islands of martensite. The fracture ductility is improved by variation of the second phase morphology, but is essentially uneffected in the range of high strength ratio (4.7). Also the variation of ductility is well understood according to the difficulty of cleavage crack formation of the ferrite grain and to the brittleness of the martensitic structure.

Yielding Behavior and Strain Aging Properties of Bake Hardening Steel with Dual-Phase Microstructure (2상 조직을 갖는 소부경화강의 항복 거동과 변형 시효 특성)

  • Lee, Seung-Wan;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.315-320
    • /
    • 2020
  • This study deals with the yielding behavior and strain aging properties of three bake hardening steels with dual-phase microstructure, fabricated by varying the annealing temperature. Bake hardening and aging tests are performed to examine the correlation of martensite volume fraction with yielding behavior and strain aging properties of the bake hardening steels with dual-phase microstructure. The volume fraction of martensite increases with increasing annealing temperature. Room-temperature tensile test results show that the yielding behavior changes from discontinuous-type to continuous-type with increasing volume fraction of martensite due to higher mobile dislocation density. According to the bake hardening and aging tests, the specimen with the highest fraction of martensite exhibited high bake hardening with low aging index because solute carbon atoms in ferrite and martensite effectively diffuse to dislocations during the bake hardening test, while in the aging test they diffuse at only ferrite due to lower aging temperature.

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Effects of Microstructure on the Fatigue Crack Propagation Resistance in Dual Phase Steel (複合組織鋼 의 피勞균열進展抵抗 에 미치는 微視組織 의 영향)

  • 김정규;황돈영;박승락
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 1984
  • In this study, martensite-ferrite dual phase steel composed of martensite in hard phase and ferrite in soft phase is made as model material, and the difference of fatigue crack propagation behavior resulted from the structural size is investigated by fracture mechanics and microstructural method. The main results obtained are as follows; 1)Fatigue crack propagation rate is influenced by ferrite grain size. In other words, in the low .DELTA. K region fatigue crack propagation rate is decreased with decreasing of grain size but the difference of propagation rate resulted from the structural size is decreased as .DELTA.K is increased. 2)The above result is explained by the degree of crack arrest effect of second phase for fatigue crack propagation depending on the ratio of reversed plastic zone size to ferrite grain size.

Effect of Ferrite Grain Size on Impact Energy of Dual Phase Steel (複合組織鋼의 衝擊에너지에 미치는 母相粒徑에 영향)

  • 김정규;유승원;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.398-403
    • /
    • 1983
  • In this investigation, the effect of microstructural factors on the impact energy was studied, using dual phase steels with soft phase of ferrite encapsulated by hard phase of martensite. It was found that the effect of the ferrite grain size on the impact energy decreases as the strength ratio increases, these results are due to the micro-brittlefracture facet by the difficulty of cleavage crack formation in the ferrite grain.

Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel (복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Lee, Joon-Ho;Sohn, Ho-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

Estimation of fracture toughness and characteristics of stretched zone formation in dual phase steel (複合組織鋼의 破壞靭性 評價와 스트렛치죤의 特性)

  • 김정규;오재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.680-688
    • /
    • 1986
  • In order to obtain the optimal estimation method of fracture toughness of dual phase steel in which martensitic phase encapsulated islands of ferritic phase, the stretched zone (SZ) method and the R-curve method of the JSME S 001 was discussed. The results obtained are as follows. (1) The $J_{IC}$ values estimated by the SZ method are overestimated as compared with those by the R-curve method. (2) The $J_{IC}$ by the R-curve method decreases with the increase of the ferrite grain size and the martensite hardness. (3) The overestimation of $J_{IC}$ by the SZ method is due to the continuous plastic blunting of ferrite after the formation of stable crack which affects the critical stretched zone width.