DOI QR코드

DOI QR Code

Yielding Behavior and Strain Aging Properties of Bake Hardening Steel with Dual-Phase Microstructure

2상 조직을 갖는 소부경화강의 항복 거동과 변형 시효 특성

  • Lee, Seung-Wan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이승완 (서울과학기술대학교 신소재공학과) ;
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2020.06.02
  • Accepted : 2020.06.05
  • Published : 2020.06.27

Abstract

This study deals with the yielding behavior and strain aging properties of three bake hardening steels with dual-phase microstructure, fabricated by varying the annealing temperature. Bake hardening and aging tests are performed to examine the correlation of martensite volume fraction with yielding behavior and strain aging properties of the bake hardening steels with dual-phase microstructure. The volume fraction of martensite increases with increasing annealing temperature. Room-temperature tensile test results show that the yielding behavior changes from discontinuous-type to continuous-type with increasing volume fraction of martensite due to higher mobile dislocation density. According to the bake hardening and aging tests, the specimen with the highest fraction of martensite exhibited high bake hardening with low aging index because solute carbon atoms in ferrite and martensite effectively diffuse to dislocations during the bake hardening test, while in the aging test they diffuse at only ferrite due to lower aging temperature.

Keywords

References

  1. A. Ramazani, S. Bruehl, T. Gerber, W. Bleck and U. Prahl, Mater. Des., 57, 479 (2014). https://doi.org/10.1016/j.matdes.2014.01.001
  2. S. Berbenni, V. Favier, X. Lemoine and M. Berveiller, Scr. Mater., 51, 303 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.031
  3. T. Liu, H. Hou, X. Zhang, H. Liu, Q. Zhou, J. Zhang, R. Gao, X. Liu and Z. Lv, Mater. Sci. Eng., A, 726, 160 (2018). https://doi.org/10.1016/j.msea.2018.04.060
  4. N. Ormsuptave and V. Uthaisangsuk, Mater. Des., 118, 314 (2017). https://doi.org/10.1016/j.matdes.2017.01.040
  5. X. Zhang, H. Hou, T. Liu, Q. Zhou, H. Liu, Y. Zhang, H. Cui and Z. Lv, J. Iron Steel Res. Int., 25, 1287 (2018). https://doi.org/10.1007/s42243-018-0189-x
  6. I. B. Timokhina, P. D. Hodgson and E. V. Perelema, Metall. Mater. Trans. A, 38, 2442 (2007). https://doi.org/10.1007/s11661-007-9258-7
  7. I. B. Timokhina, E. V. Perelema, S. P. Ringer, R. K. Zheng and P. D. Hodgson, ISIJ Int., 50, 574 (2010). https://doi.org/10.2355/isijinternational.50.574
  8. A. K. De, S. Vandeputte and B. C. De Cooman, Scr. Mater., 41, 831 (1999). https://doi.org/10.1016/S1359-6462(99)00232-8
  9. M. Soliman and H. Palkowski, Mater. Sci. Eng., A, 777, 1 (2020).
  10. A. Ramazani, S. Bruehl, M. Abbasi, W. Bleck and U. Prahl, Steel Res., 87, 1559 (2016). https://doi.org/10.1002/srin.201600060
  11. D. Ji, M. Zhang, D. Zhu, S. Luo and L. Li, Mater. Sci. Eng., A, 708, 129 (2017). https://doi.org/10.1016/j.msea.2017.09.127
  12. A. Chakraborty, M. Adihikary, T. Venugopalan, V. Singh, T. Nanda and B. R. Kumar, Mater. Sci. Eng., A, 676, 463 (2016). https://doi.org/10.1016/j.msea.2016.09.018
  13. S. Satoh, S. Okada, T. Kato, O. Hashimoto, T. Hanazawa and H. Tsuenekawa, Kwasaki Steel Tech. Rep., 27, 31 (1992).
  14. J. R. G. D. Sillva and R. B. McLellan, Mater. Sci. Eng., A, 26, 83 (1976). https://doi.org/10.1016/0025-5416(76)90229-9
  15. M. E. Ashby, Philos. Mag., 21, 399 (1970). https://doi.org/10.1080/14786437008238426
  16. M. E. Ashby, Strengthening Methods in Crystals, A. Kelly and R. B. Nicholson ed.(Elsevier, Amsterdam, 1971), p. 137.
  17. P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari and N. Parvin, Mater. Sci. Eng. A, 518, 1 (2009). https://doi.org/10.1016/j.msea.2009.05.046
  18. S. Sodjit and V. Uthaisangsuk, Mater. Des., 41, 370 (2012). https://doi.org/10.1016/j.matdes.2012.05.010
  19. A. M. Sarosiek and W. S. Owen, Mater. Sci. Eng., A, 66, 13 (1984). https://doi.org/10.1016/0025-5416(84)90138-1
  20. G. E. Dieter, Mechanical Metallurgy, SI Metric ed. (McGraw-Hill, USA, 1988), p.188.
  21. T. Waterschoot, A. K. De, S. Vandeputte and B. C. De Cooman, Metall. Mater. Trans. A, 34, 781 (2003). https://doi.org/10.1007/s11661-003-0113-1
  22. R. B. McLellan and M. L. Wasz, J. Phys. Chem. Solids, 54, 583 (1993). https://doi.org/10.1016/0022-3697(93)90236-K
  23. Y. Shinohara, T. Hara, E. Tsuru, H. Asahi, Y. Terada, N. Ayukawa and M. Murata, Proc. Of the Seventeenth Interen. Offshore and Polar Engineering Conf., p.2949, Lisbon, Portugal (2007).
  24. T. Hara, Y. Terada, Y. Shinohara, H. Asahi and N. Doi, Proc. Of the Nineteenth Interen. Offshore and Polar Engineering Conf., p. 73, Osaka, Japan (2009).