• Title/Summary/Keyword: Dual Mapping Model

Search Result 9, Processing Time 0.073 seconds

Study on Color Coordination Simulator based on Dual Mapping Model (이중매핑모델에 의한 칼라배색 시뮬레이터 구축에 관한 연구)

  • 김돈한;정지원
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.57-66
    • /
    • 2003
  • In order to develop color image, color simulation based on data processing techniques has been developed and applied to data interpretation tools or product design supporting systems. It has been a commonmethod to use image key words to search for data and provide color coordination samples that determine computer combination in computerized support systems until recently. However, this method does not reflect system designers and users taste or preference on making final choices of color coordination samples because the database was designed based on an assumption of standardized group that was established database from large scaled image evaluation research. In this study, we suggest a color coordination simulator that supports designer's final decision-making procedure on sample groups through the simulation of various color combination. The simulator allows communications with the system to explore a designer's color combination taste and preference, and provides a user for an efficient environment to judge the optimum result. The color coordination simulator was designed based upon Dual mapping model derived from a designer's thought process, and four steps of operations longrightarrowdefining color concept longrightarrowmaking color sample groupslongrightarrow simulation-determining ranking among final combination samples - will be assisting color design process.

  • PDF

Complex nested U-Net-based speech enhancement model using a dual-branch decoder (이중 분기 디코더를 사용하는 복소 중첩 U-Net 기반 음성 향상 모델)

  • Seorim Hwang;Sung Wook Park;Youngcheol Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.253-259
    • /
    • 2024
  • This paper proposes a new speech enhancement model based on a complex nested U-Net with a dual-branch decoder. The proposed model consists of a complex nested U-Net to simultaneously estimate the magnitude and phase components of the speech signal, and the decoder has a dual-branch decoder structure that performs spectral mapping and time-frequency masking in each branch. At this time, compared to the single-branch decoder structure, the dual-branch decoder structure allows noise to be effectively removed while minimizing the loss of speech information. The experiment was conducted on the VoiceBank + DEMAND database, commonly used for speech enhancement model training, and was evaluated through various objective evaluation metrics. As a result of the experiment, the complex nested U-Net-based speech enhancement model using a dual-branch decoder increased the Perceptual Evaluation of Speech Quality (PESQ) score by about 0.13 compared to the baseline, and showed a higher objective evaluation score than recently proposed speech enhancement models.

A Dual-Level Model of Team Decision Making (팀 의사결정에 대한 이원적 단계 모델)

  • Kang, Min-Cheol
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.37-59
    • /
    • 2004
  • Team decision making is a collective behavior that needs to be understood by considering properties belonging to team and individual member domains together. This paper introduces a conceptual model called "Dual-Level(DL)" model that describes a team decision-making process in terms of team level, member level, and the relationship between them. The team-level view explains the decision-making process by considering the team as a wholeand divides the process into three stages: Problem Conceptualization, Alternative Generation, and Selection. The member-level view describes what happens to individual members when they go through the group process and splits it into the five phases: Individual Cognitive Mapping, Problem Decomposition, Subproblem Session, Subproblem Integration, and Team Decision. The DL model works as a theoretical framework to explore team decision making by using a set of computational models of team design and team members. In practice, the conceptual framework is used to build a computational model of decision making team, called "Team-Soar."

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Analysis of Progressive Fracture in Concrete using Finite Elements with Embedded Discontinuous Line (내부 불연속 요소를 사용한 콘크리트의 파괴진행해석)

  • 송하원;우승민;김형운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.450-455
    • /
    • 1998
  • In this paper, finite element with embedded discontinuous line is introduced in order to avoid the difficulties of adding new nodal points along with crack growth in discrete crack model. With the discontinuous element using discontinuous shape function, stiffness matrix of finite element is derived and dual mapping technique for numerical integration is employed. Using the finite element program made with employed algorithms, algorithm is verified and fracture analysis of simple concrete beam is performed.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

Modeling of Progressive Failure in Concrete using Discontinuous Finite Elements (불연속 요소를 사용한 콘크리트 파괴진행의 유한요소 모델링)

  • Shim, Byul;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.247-252
    • /
    • 1996
  • In the concrete structures, cracks occur in various causes and the cracks seriously affect the functions of structures. The analysis techniques of progressive crack in the concrete have been improved with the advance of numerical techniques. The discrete crack model used in finite element program for the analysis of progressive failure is very effective, but it can not be easily implemented into numerical procedures because of difficult handing of nodal points in finite element meshes for crack growth. This paper introduces one of the techniques which skips the difficulty. In this paper, the modeling of progressive failure using finite element formulation is explained for the analysis of concrete fracture. The discontinuous element using the discontinuous shape function and the dual mapping technique in the numerical integration are implemented into finite element code for this purpose. It is shown that developed finite element program can predict the quasi-brittle behavior of concrete including ultimate load. The comparisons of the analysis results with other data are also shown.

  • PDF

Implementation of Virtual Environment System for Multi-joint Manipulator Designed for Special Purpose Equipment with Wearable Joystick used in Disaster Response (웨어러블 조작기 기반 재난·재해 특수 목적기계 다관절 작업기의 가상 환경 작업시스템 구현)

  • Cha, Young Taek;Lee, Yeon Ho;Choi, Sung Joon
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2020
  • We introduce a piece of special-purpose equipment for responding to disasters that has a dual-arm manipulator consisting of six-axis multi joints, and a master-slave operating system controlled by a wearable joystick for intuitive and convenient operation. However, due to the complexity and diversity of a disaster environment, training and suitable training means are needed to improve the interaction between the driver and equipment. Therefore, in this paper, a system that can improve the operator's immersion in the training simulation is proposes, this system is implemented in a virtual environment. The implemented system consists of a cabin installed with the master-slave operation system, a motion platform, visual and sound systems, as well as a real-time simulation device. This whole system was completed by applying various techniques such as a statistical mapping method, inverse kinematics, and a real-time physical model. Then, the implemented system was evaluated from a point of view of the appropriateness of the mapping method, inverse kinematics, the feasibility for real-time simulations of the physical environment through some task mode.

Perenniality-Potential and challenges for future sustainable crop production

  • Paterson, Andrew
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.11-11
    • /
    • 2017
  • The most drought resistant among the five most important cereal crops, and a key dual-use (grain and biomass) crop in regions containing some of the world's most degraded soils, sorghum has inherent climate resilience that is likely to become more important under environmental conditions that are projected by many climate change models. The importance of sorghum might be further elevated by the development of productive genotypes that increase the extent and duration of soil cover beyond those of conventional annual crops, mitigating or even reversing losses of ecological capital through multiple crops from single plantings. Rich genetic and genomic resources have been developed to link Sorghum phenotypic diversity to its molecular basis, and in particular the genus has become a model for dissecting the molecular control of perenniality. Nature has made Sorghum perennial at least twice, and crosses between wild perennials and cultivated sorghums show the feasibility of developing genotypes with varying degrees of investment in perenniality while still providing harvestable food, feed, sugar and/or cellulose. Genetic analysis of progeny from these crosses is revealing the hereditary basis of traits related to ratooning and perenniality and providing diagnostic DNA markers. One perennial Sorghum species has adapted to continents and latitudes far beyond the reach of its progenitors, surviving stresses year after year that are only periodically experienced by conventional (annual) sorghum, and may also harbor novel alleles that may mitigate production challenges in conventional annual sorghums.

  • PDF