• Title/Summary/Keyword: Dual Fuel

Search Result 282, Processing Time 0.022 seconds

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

SNG Production from Wood Biomass with Dual Fluidized-Bed Gasifier (목재 바이오매스를 활용한 이중유동층 가스화기의 SNG 생산)

  • Yoon, Hyungchul;Cho, Sungho;Lee, Dock-jin;Moon, Goyoung;Cho, Soonhaing
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.214-225
    • /
    • 2016
  • Gasification is one of the important contribution to resource recycling by conversion of biomass to a variety of energy sources such as alcohol, SNG etc., and to global warming prevention by reduction of green house gases such as $CO_2$. The aim of this study is to draw the optimal operation condition of dual fluidized-bed gasifier with biomass fuel, to verify SNG production efficiency and to establish the basis for the domestic commercialization of dual fluidized bed gasification. As a result, dual fluidized-bed gasifier has the optimal conditions at $826^{\circ}C$ with steam input 1,334 g/hr, air input 5.56 L/min. The carbon conversion is 81% and SNG production efficiency was $CH_4$ 92%.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Experimental Study of Combustion Characteristic for Dual Mode Ramjet Combustor (이중모드 램제트 연소기 연소특성 실험적 연구)

  • Shim, ChangYeul;Namkoung, HyuckJoon;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.325-329
    • /
    • 2017
  • In this study, the combustion experiment of hydrocarbon-kerosene fueled dual mode ramjet combustor was performed at mach number 3.5~6.0 conditions. Through the experiment, the temperature and the pressure distribution inside the combustion chamber were measured and the combustion characteristics inside the combustion chamber were investigated. In the mach number 3.5~5.0 range, it was able to identify subsonic combustion in the downstream combustion chamber. In the mach number 6.0 condition, the injected fuel from the injectors was naturally fired, and it was possible to confirm that supersonic combustion was successful in the upper chamber.

  • PDF

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

The Experimental Study on the Interaction of Dual Orifice Type Swirl Injectors (이중선회 분무간의 상호작용에 관한 실험적 연구)

  • Kim, H.J.;Park, B.S.;Kim, H.Y.;Chung, J.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.119-126
    • /
    • 2001
  • The effects of injection pressure and the distance between injectors on the droplet distribution characteristics of liquid spray for dual orifice type swirl injectors were experimentally investigated. The SMD distributions, volume concentration and Rosin- Rammler variation N of liquid spray droplets for water and a fuel were measured by using the laser diffraction particle sizer. The results of present study show that SMD decreases and spray angle increases as the injection pressure increases. The interaction of sprays from two injectors gives more uniform SMD distribution in the radial direction. As the distance between two injectors increases, SMD that is measured in the interacting region increases. The effect of viscosity on the droplet distribution in the interacting region is greater than the that of surface tension of liquid.

  • PDF

Heat Transfer Characteristics of DPH(Dual Pack Heater) in Electric and Fuel Cell(FC) Car (전기 및 연료전지자동차용 DPH 난방장치개발연구)

  • Roh, Hong-Koo;Lim, Kyung-Bin;Noh, Jong-Ho;Lee, Young-Ki;Ko, Jun-Bin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1262-1266
    • /
    • 2009
  • The study aims to analyzed and identify the heat transfer characteristics of heating unit for car using experimental method in order to design DPH. The temperature comparison processes were done with various experimental conditions. In addition, the optimal conditions of DPH design were proposed as field test in real car, hot air flow, transient situation.

  • PDF

Power Distribution and Coordinated Control for a Power Split Hybrid Electric Bus

  • Wang, Feng;Zhong, Hu;Ma, Zi-Lin;Mao, Xiao-Jian;Zhuo, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.593-598
    • /
    • 2008
  • The power distribution is proposed to determine the target operating points of the system components as the basis for maximal the efficiency of the overall system for a power split dual electric machine hybrid electric bus. The coordinated control is constructed on the basis of the power distribution. The basic coordinated control is implemented to satisfy the driver's power demand, in which both the dynamic characteristics of the engine and the dual electric machine are explicitly taken into account. Moreover, the improved coordinated control is suggested to suppress engine dynamic operation and rich fuel injection.