• Title/Summary/Keyword: Drying temperature

Search Result 1,497, Processing Time 0.026 seconds

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Study on Press-drying of Sapwood and Heartwood of Oak (상수리나무 변재(邊材)와 심재(心材)의 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Jung, Hee Suk;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 1977
  • Press drying was used on sapwood and heartwood of oak (Qercus acutissima Carruthers) to find profitable means of drying low grade logs. This study was designed to investigate the process of press drying considering core temperature, current moisture content, drying rate, drying time, final moisture content, dimensional change and drying defects. The drying tests were conducted using 1.5 centimeter thick material at platen temperature of $175^{\circ}C$ and pressure of 35psi. The results were summarized as fallows. 1. Core temperature was divided into three stages of drying characterized by initial heating period, plateau temperature, and period of rising core temperature. Plateau temperature of heartwood material was higher and longer than that of sapwood material. 2. The predicting equation for change in drying rate of sapwood material was log y=-2.7925-0.0811x as function of time. That of heartwood material was log y=-3.3382-0.0468x. 3. Sapwood material reduced the moisture content from 59 to 2.5 percent in 45minutes. Heartwood material reduced the moisture content from 64 to 3.3 percent in 55 minutes. 4. Shrinkage during press drying were 20.4 percent in thickness direction and 2.5 percent in width direction. Recovery on equilibrium conditioning at 65 percent relative humidity and temperature of $20^{\circ}C$. were 11.4 percent in thickness direction and 49.4 percent in width direction. 5. Heartwood material developed severe honeycombing and moderate checking. The sapwood material dried without honeycombing, checking and collapse. All material kept wood flat.

  • PDF

Redrying Fire - Retardant - Treated Structural Plywood (구조용(構造用) 내화처리(耐火處理) 합판(合板)의 재건조(再乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Schaffer, E.L.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.1-21
    • /
    • 1981
  • Exterior grades of Douglas-fir and aspen plywood were impregnated with interior fire-retardant chemicals and redried under low-, intermediate-, and high-temperature drying conditions. Fire-retardant treatments included borax-boric acid, chromated zinc chloride, minalith, pyresote, and a commercial formulation. Drying processes included kiln and press-drying. Evaluated were drying rates and defects generated. The borax-boric acid and the commercial treatments redried at rates similar to water-treated controls. Other salt treatments were significantly slower drying and more defect prone. Chromated zinc chloride treatment was consistently the slowest drying and most defect prone. Press drying was three times faster at an equivalent temperature level. However, thickness shrinkage doubled because of 50 1b/in. platen pressure.

  • PDF

Simulation of Natural Air Drying of Barley -Comparison of Experimental and Simulated Results- (보리의 상온 통풍건조 시뮬레이션(I) -실험치와 예측치의 비교-)

  • Keum, D.H.;Yi, S.D.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 1990
  • Four models in current use for cereal grain drying, equilibrium model, Morey model, partial differential equation model and simplified partial differential equation model, were modified to be suitable for natural air drying of barley. The predicted by the four models and experimental results were compared. Three models except equilibrium model predicted moisture comtent and grain temperature very well. But equilibrium model overpredicted moisture content and grain temperature of bottom layer. The degree of prediction of the four models for relative humidities of exhaust air didn't differ much from one another and equally the four models predicted relative humidity statisfatorily. Morey model took much shorter computing time than any other models. Therefore, considering the degree of prediction and computing time Morey model was the most suitable for natural air drying of barley.

  • PDF

Synthesis and Properties of ITO Nano Powders by Spray Drying Process (분무건조법에 의한 ITO 나노분말의 합성과 특성)

  • 허민선;최철진;권대환
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80$0^{\circ}C$.

The Present of Rice Drying and Storage in the U.S.A (미국에서의 벼 건조 및 저장현황)

  • Bakker-Arkema, Fred W.;Hines, R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1994.06f
    • /
    • pp.139-160
    • /
    • 1994
  • The-state-of-the-art of rice drying in the U.S.A. is presented. The U.S.A. is a minor producer but major exporter of rice. Head yield is its major criterion in evaluating rice quality . A decrease of 1 to 3 points in head yield can be expected to occur in a well-designed rice-drying system. Rice is dried on the farm in bins in the U.S. A., and n high-temperature continuous -flow dryers at the elevator level. Two relatively new rice-drying systems are discussed in some detail. : The top-bin/in -bin-counterflow bin-type on-farm dryer, and the concurrent-flow high-temperature elevator dryer.

  • PDF

An Experimental Study on the Spontaneous Ignition of Flaxseed Oil and Olive Oil Adsorbed on Towels (타올에 흡착된 아마인유와 올리브유의 자연발화에 대한 실험적 연구)

  • Kim, Kyoung-Su;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.324-332
    • /
    • 2022
  • Purpose: In order to conduct a spontaneous ignition test in which a fire occurs in the absence of an ignition source due to the oil adsorbed on the towel. A phenomenon in which spontaneous ignition occurs when adsorbed to fibers using flaxseed oil, which is drying oil and olive oil, which is non-drying oil, is tested through an experiment. Method: After placing the sample container in the experimental device, observe the change in the central temperature of the sample, and when the central temperature rises above the set temperature and a fire occurs, it is judged as "ignition", and the experiment is stopped after checking the maximum value of the central temperature of the sample,When the central temperature of the sample was maintained similar to the set temperature, it was judged as "non-ignition" and the experiment was stopped. Result: In the towels with adsorbed flaxseed oil, the temperature in the sample container increased rapidly and combustion occurred in sheets 5, 10, and 15. Olive oil is a non-drying oil, does not ignite because it is difficult to dry because carbon is a single bond and it is difficult to bond with oxygen. Conclusion: It was confirmed that the more the amount of towel adsorbed to the drying oil, flaxseed oil, the longer the time to reach the set temperature and the occurrence of ignition.

Microstructures and Drying of the Alumina Green Body by the Gel-Casting Method (Gel-Casting으로 제조한 알루미나 성형체의 건조와 미세구조)

  • 오창준;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1467-1474
    • /
    • 1994
  • The effects of the dispersion, drying, and binder burning-out on the green-microstructures of gelcasted alumina were studied. The slip consisting of 55 vol% alumina powder and 5 wt% organic materials was well-dispersed by adding 0.28 wt% polyelectrolyte polymer. Green bodies were dried at >85% relative humidity at room temperature. Green-microstructures were observed to be depended on the heating rate during binder burnout. Constant drying rate was not observed in drying process of gelcasted alumina. Sintered body showed its relative density higher than 99% when it was sintered at 1$600^{\circ}C$ for 2 hours.

  • PDF

Development of Red Pepper Dryer -Simulation and Optimization- (고추 건조기(乾燥機)의 개발(開發)에 관한 연구(硏究) -시뮬레이션 및 최적화-)

  • Keum, D.H.;Choi, C.H.;Kim, S.Y.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.248-262
    • /
    • 1991
  • Simulation model was developed to analyze drying process for tray type red pepper dryer and validated by experiments. This model could predict satisfactorily temperatures and moisture contents of red pepper and temperatures of drying air during drying. Optimize algorithm was developed to search control valiables (drying air temperature, air recycle ratio and air flow rate) of red pepper dryer based on a criterion of minimizing energy consumption under the constraint conditions that statisfied carotenoid retension of at least 210mg per 100g dry matter, the moisture content of bottom layer of 15% (d.b) and drying time of less than 35 hours. Step changes in drying air temperature and air recycle ratio were considered in the optimization. In single step in control variables, the difference of the moisture content between top layer and bottom layer was great and more fan power was required. As the drying trays were exchanged when the moisture content of bottom layer reached to 100% (d.b), fifty percent of energy was saved and the difference of moisture content was little. In double step changes in control variables, optimal conditions were found by changing the step when the moisture content of bottom layer reached to 100% (d.b) (about 19.8 hours from starting drying). Optimum air flow rate was $18.1cmm/m^2$. Optimum drying air temperature and air recycle ratio in the first step was $55.8^{\circ}C$ and 0.80, and in the second step $65.6^{\circ}C$ and 0.88, respectively. In triple step changes in control variables, the optimal conditions were found by changing the steps when the moisture content of bottom layer reached to 250% (d.b) and 150% (d.b). Optimal air temperatures were $66.2^{\circ}C$, $58.4^{\circ}C$ and $66.9^{\circ}C$, and optimal air recycle ratios were 0.778, 0.785, 0.862 at each step, respectively. Optimal air flow rate was $18.9cmm/m^2$. The best operating mode was triple step mode considering energy consumption, drying time, fan power, and quality of dried red pepper. When the triple step mode was used to dry the red pepper, the energy consumption was about 16.5%~57.2% less than that of the single step mode and the drying time was 6.6 hours shorter than that of the double step mode.

  • PDF

The Stability of Color and Antioxidant Compounds in Paprika (Capsicum annuum L.) Powder During the Drying and Storing Process

  • Park, Jae-Hee;Kim, Chang-Soon
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.187-192
    • /
    • 2007
  • The objectives of this study were to examine changes in the color and antioxidant compounds of paprika powder under various conditions, as well as to establish the suitable conditions for drying and storage. Paprika was dried using the following methods: freeze-drying, vacuum drying, far infrared-ray drying, and hot-air drying. Measurements of the moisture content, color pigments, and antioxidant compounds (total carotenoids, capsanthin, ascorbic acid, and total polyphenols) were completed during 120 days of storage at 4 and $30^{\circ}C$. We found that drying methods, storage temperatures, and packaging materials affected the American Spice Trade Association (ASTA) and Hunter color values, as well as the antioxidant content of paprika powder. There was a high correlation (r=0.87, p<0.01) between the ASTA color and the $a^*/b^*$ value. The loss of red color was closely related to the reduction of moisture content (r=0.81, p<0.01) during storage. Drying paprika with a low temperature in the absence of air resulted in better retention of the carotenoids and ascorbic acid. Also, as the retention of the carotenoids and ascorbic acid increased, the stability of the red pigment increased. Freeze-drying was found to be the most suitable drying method for the stability of the antioxidant compounds and red pigment.