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SUMMARY

The-state-of-the-art of rice drying in the U. S. A. is presented. The U. S. A.
is a minor producer but major exporter of rice. Head yield is its major criterion
in evaluating rice quality. A decrease of 1 to 3 points in head yield can be
expected to occur in a well-designed rice-drying system. Rice is dried on the
farm in bins in the U. S. A., and in high-temperature continuous-flow dryers at
the elevator level. Two relatively new rice-drying systems are discussed in
some detail: the top-bin/in-bin-counterflow bin-type on-farm dryer, and the
concurrent-flow high-temperature elevator dryer.

I. Introduction

The U. S. A. is one of the major grain producers in the world. In the early
nineties, the world production of the three major cereals-maize, rice and wheat-
had stabilized in the range of 1,300~1,400 million metric tonnes (MMT);
during that period, the world production of soybeans was 110-120 MMT. As the
figures in Table 1 show, the U. S. A, is a principal producer of maize, soybeans
and wheat, but not of rice.

Table 1. Production (MMT) of major grain crops in the U.S.A. and the world in

1990-1991.
U.S.A WORLD
MAIZE 201 470
RICE 7 518
SOYBEANS 52 115
WHEAT 79 592

Source : USDA (1993).
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Tables 2 through 7 provide data on the world production and trade, the
world-market prices, and the world stocks of rice in the last 3~5 years. Korea
and the U. S. A. produce similar quantities of rough rice; China is by far the
largest producer (see Table 2). Long-grain rice is the major type grown in the
U. S. A. (see Table 3). Thailand and the U. S. A. are the two major rice-
exporting countries (see Table 4). The U, S. A. at present exports the bulk of
its rice in milled and parboiled form (see Table 5). The world-market prices of
rice have changed little in the last five years except in the last 12 months (see
Table 6) ; the world stocks of rice have steadily declined during that period (see
Table 7).

Rough rice is harvested in the U. S. A. at an average moisture content
between 16% and 28%, depending on the type of rice, the number of the
cutting, and the growing location, In California, medium- and short-grain rice
are normally harvested at 20~26% moisture, second-cutting long-grain rice in
Texas at 16~18%. In general, at the higher harvest moistures, the grain yield

Table 2. Rice production (MMT) in different countries.

¢ KOREA JAPAN UsS.A CHINA
1988 /89 8.4 12.4 7.3 169.1
1990 /91 7.7 13.1 7.1 189.3
1992 /93 7.3 13.2 8.1 186.2
1993 /A4 6.4 10.3 7.5 177.1

Source: World Grain (1994).

Table 3. U.S. production (MMT) of long and medium/short rice.

LONG MEDIUM /SHORT
1988 /89 5.3 1.8
1990 /91 4.8 2.1
1992 /93 5.7 2.7
1993 /94 5.2 2.2
Source : World Grain (1994).
Table 4. Rice exports (MMT) of the U.S.A and Thailand.
U.S.A THAILAND
1988 2.2 4.8
1990 2.4 3.9
1992 2.1 4.8
1993 2.5 4.3

Source
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Table 5. The type of U.S. rice exports (MMT).

ROUGH MILLED BROWN PARBOILED
1988/89 0.1 1.4 0.3 0.8
1990 /91 0.2 0.8 0.4 0.8
1991 /92 0.2 0.7 0.3 0.8
Source : USDA (1993).
Table 6. The world-market prices ( $/MMT) of different types of rice.
LONG MEDIUM SHORT BROKEN
12/88 210 194 192 105
12/90 182 161 160 91
12/92 190 172 171 95
Source : USDA (1993).
Table 7. World rice stocks (MMT).
1988 47.8
1990 59.5
1992 52.4
1993 44.9

Source : World Grain (1994).

and head yield are maximized.,

Considerable moisture has to be removed from grain during drying. Over 100
kg of water is removed in drying rice from 25% to 15% moisture content,
requiring over 125,000 kcal. Natural gas and LP-gas are the major energy
sources in the U, S. A.; oil and coal are employed infrequently.

In drying rice, one has to be aware of the potential nonuniformity of the
moisture content in a lot. At harvest time there may be a significant difference
in moisture content between the most mature and least mature kernels on one
plant; variations up to 20% moisture are not uncommon between the grains
from the top of the most mature panicle and the kernels from the bottom of the
least mature panicle. Fortunately for the dryer operator, the percentage of
ultrahigh moisture-content kernels in a lot is relatively small, Table 8 tabulates
the moisture content distribution of five size fractions in a freshly harvested
sample of Texas long-grain rice; the average moisture content is 19.8%, but
21.5% of the kernels (mostly the thinner grains) are over 20.1% moisture, and
4.5% are over 23.1% moisture.

In some rice growiﬁé areas in the U, S, A, rice from individual growers is
dried and stored in separate bins as identity-preserved rice. This practice is
followed in Texas with long-grain rice. Drying of an identity-preserved rice is
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facilitated by the fact that the average moisture content across a lot of rice is
usually fairly uniform. In California, rice from a variety of growers is
commingled at warehouses before drying and storage; the difference in the
average moisture content within commingled lots can be as much as 8~10
percentage points. Drying of commingled rice leads to partial overdrying of the
drier rice and, thus, usually to a decrease in head yield.

Table 8. Moisture content distribution of five fractions in a freshly harvested
sample of long-grain rice at an average moisture content of 19.8%; (w.b.).

SCREEN SIZE AMOUNT RETAINED MOISTURE CONTENT
(mm) (%) (% w.b.)

1.98 x 12.70 78.5 19.2

1.93 X 19.05 7.0 201

1.78 X 12.70 10.0 21.2

1.63 x 953 3.6 23.1

1.55 x 12.70 0.9 27.1.

Source : Chau and Kunze (1982).

II. Rice Quality

The quality characteristics of rice to be maintained during the drying
process are the head yield, the color, and the cooking qualities, The head yield
of rice is especially sensitive to the mode of drying, and is usually used in the
U. S. A. in assessing the success or failure of a rice drying system, [Nofe: head
yield is defined as the percentage of whole milled kemels in a lot of rough rice. ]

The head yield of rice varies with variety, average moisture content at
harvest, and climatic conditions, In California, the average head yields over a
seven-year period (1979~1985) for very early, intermediate, and late varieties
of medium-grain rice were 52.0%, 53.8%, and 57.4%, respectively. The
maximum head yield of medium-grain varieties was obtained at 21~23%
harvest moisture content, of long-grain rice types at 18~20%. Fig. 1 shows the
head rice yield of long-grain, medium-grain, and short-grain, rice as a function
of moisture content at harvest, A decreased head vield can be expected when
rice is harvested at temperatures above 32°C. In Texas, the maximum head
yield of long-grain rice is obtained in the 20~22% moisture content range;
when it reaches 16 to 18%, the proportion of fissured grains increases
significantly with an accompanying sudden decrease in head yield.

The head yield of a lot of rice increases if drying is postponed for a day in
order for the internal moisture gradients in the kernels, and the different
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moisture contents between the individual kernels, to equilibrate. An increase in
head yield of about one percentage point can be expected; postponing the
drying treatment beyond 24 hours does not affect the head yield.

70

% Head Rice

20 ¥ 1 T 1 ' I v 1

% Moisture, wet basis
Fig. 1. Head yields of the long-grain variety L-202 compared with the short-grain variety
$-201 and the medium-grain variety M-201 when harvested at various moisture
contents.

The objective of the rice drying process is to maximize the drying capacity
of a rice dryer at a minimum loss in head yield and a minimum consumption of
energy, without affecting the color and cooking characteristics of the rice.
Drying rice slowly to 13.5% in successive 15- to 20-minute periods at air
temperatures between 25°¢C and 35C and relative humidities between 55% and
65%, with intermittent tempering of 4~6 hours, minimizes the head yield loss.
For this reason, this combination of drying conditions is often employed in the
U. S. A. by dryer operators in laboratory sample dryers to establish the initial
(i.e., the identity) head yield and total yield of a rice lot to be dried.

During commercial rice drying in the United States, the head yield can be
expected to decrease 1 to 4 percentage points while the total yield remains
unchanged. For instance, in a typical crop year (1983~84) at five California
warehouses which processed medium-grain rice by multi-pass crossflow drying,
the head vield decreased 2.6% to 4.3%, and the total yield changed from + 1.8
% to —2.3% (unpublished authors’ data).

The difference in price between whole and broken rice kernels depends on
the year, the size of the brokens, and on the country. In the United States in
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the 1980s, the value of brokens was 57~63% of that of head rice. Thus, it
behooves the dryer designer and operator to minimize the head yield loss in
drying rice from harvest to the safe storage moisture content. A decrease of 2
to 3 points in head yield constitutes a realistic design objective for a rice drying
system,

. Bin Dryers

Bin dryer systems in use in the U, S, A, include: (1) full-bin natural air and
low-temperature drying, (2) layer drying, (3) in-bin counterflow drying, and (4)
in-bin batch drying. Each of these designs can include a stirring device and /or
a recirculator. Each of these systems is shown in Fig, 2.
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Fig. 2. On-farm in-bin and non-bin grain drying systems ( Brooker et al., 1992).

1. Full-Bin Drying

In-bin natural-air and in-bin low-temperature dryers are similar in design. Both are
full-bin dryers in which wet grain is placed in the bin to a depth of 2.5 to 5.0
meters and is slowly dried using an external fan as the airflow source (see Fig.
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3). The natural air dryer used ambient air, the low-temperature dryer employs
slightly heated (AT = 3 to 5¢) air. Both systems produce high-quality grain
at a relatively low throughput, if properly operated. The rate of airflow and the
relative humidity of the air entering the grain mass are critical to the success of
the two systems. The required minimum values of the airflow and the relative
humidity depend on the initial rice moisture content, the harvest date, the
environmental conditions during the drying process, and the location. Table 9
shows the minimum airflow requirements for the in-bin natural-air drying of
long-grain rice in Arkansas. The data illustrate the significance of the initial
moisture content on the airflow-rate selection, In evaluating the figures in
Table 9, it should be understood that the values are location dependent, and
thus do not apply to other rice-growing regions (i.e. California or Korea).

Grain Spreader

(4

Fan and

Ooti | Perforated
ptiona Drying

Heater

Floor
; N\

Unloading Auger

Fig. 3. In-bin natural-air /low-temperature rice dryer (MWPS, 1989).

Table 9. Recommended airflow for the in-bin natural-air drying of long-grain rice in

Arkansas.
MC INITIAL AIRFLOW MC INITIAL AIRFRLOW
(% w.b.) (m*/min. tonne) (% w.b.) (m*/min. tonne)
15 ~ 18 2 20 ~ 22 4
18 ~ 20 3 above 22 6

Source : Siebenmorgen et al. (1991).




Stirring devices are frequently employed with in-bin natural-air and low-
temperature rice drying systems. They generate a mixing of the bin content
every 24 to 48 hours. Stirring alleviates the problem of overdrying of the
bottom grain layers in the bin, increases the airflow through the rice by about
10%, and prevents a steep moisture gradient from occurring in the bin,
Perforated bin-wall liners are recommended in order to eliminate condensation,
and to strengthen the bin walls.

In-bin layer drying is similar to natural-air drying, and has comparable airflow
requirements. Rather than filling a bin at one time with wet rice, successive
layers are placed in the bin after the preceding layer has almost reached the
desired moisture content (see Fig. 2). Like natural-air and low-temperature
drying, layer drying is a low-capacity system; it varies in its optimum operating
conditions with locality and crop type /condition, and requires considerable
operator expertise,

In-bin counterflow drying is a relatively new process. It can be designed as a
one-bin grain-recirculating system, but usually consists of two or more bins (see
Fig. 4). Wet rice is loaded in the top of the in-bin counterflow drying bin, and is
intermittently removed in thin layers by a tapered-auger located at the bottom
of the bin, The partially-dried, hot rice is moved to a second bin for slow in-bin
final drying and cooling. The airflow rates and drying-air temperatures in an in-
bin-counterflow system are higher than in-bin natural-air and in-bin low-
temperature dryers because the grain is subjected to the warm air only for a
limited period (i.e. minutes instead of hours or days) in the counterflow system;

TRANSFER AUGER

TO COOLING
& STORAGE

W VERTICAL
AUGER

SPECIAL ON-FLOOR
TAPERED SWEEP AUGER

, (Slices a layer of dry grain off the
floor as soon as it has dried)

= -

1
\
UNDERFLOOR \ FAN-HEATER
BIN UNLOADING AUGER PERFORATED FLOOR

Fig. 4. In-bin counterflow grain dryer.

—>
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In-bin batch drying dry grain in batches of limited thickness (0.3~1 m) under
relatively high-airflow and high-temperature conditions. During the drying
process, the rice batch can be located either on the perforated bin floor (see
Fig. 2) or on an elevated drying floor in the top of the bin (see Fig. 5). The
airflow rate and drying-air temperature of in-bin batch dryers are similar to
those of in-bin counterflow dryers, i.e. 5~10m? /min. tonne and 35~45C.

PERFORATE
DUMP GATES o P

\ COOLING FAN
A

PERFORATED FLOOR

Fig. 5. Top-bin rice drying system.

A recent in-bin rice-drying design is the so-celled top-bin/in-bin-counterflow
system which combines top-bin drying with in-bin-counterflow and in-bin ambient
drying. Fig. 6 shows the layout of the system. It consists of a hopper-type
receiving bin, three top-bin intermittent-flow /in-bin continuous-flow drying
bins, and two in-bin aeration /storage bins, placed in series. Each drying bin
contains a top-bin (TB) dryer in the top of the bin, and an in-bin counterflow
(IBCF) dryer at the bottom of the bin. Thus, high moisture content rice is
subjected to six drying and one aeration treatments during the drying /aeration
process. Typical conditions for operating the TB /IBCF system in drying rice
from 24% to 13% are tabulated in Table 10. The grain-depth in the TB dryer in
each drying bin is 0.3m, and 1.5 m in the IBCF dryer. The tempering time
between the TB and IBCF drying treatments is 7.5 hours. Thus, the total
drying time in the, TB/IBCF 3-bin system is 27 hours in drying rice about 10
percentage points of moisture,
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Table 10. Approximate operating conditions of the TB/IBCF drying system in drying

long - grain rice from 24% to 13% (w.b.).

AIR/GRAIN BIN 1 BIN 2 BIN 3
CONDITION B IBCF T8 IBCF ™ IBCF
AIR TEMP 52 27 46 27 41 27
()
AIRFLOW
0 1
(m?/min, tonne) 50 1 50 1 5
OQUTLET MC
13.5 13
(AVERAGE, %) 20 19 16 15
OUTLET TEMP
7 28
(AVERAGE, 0 | " 21 39 28 3

Source : Bakker-Arkema and Hines (1993).

IV. Continuous-Flow Dryers

Three continuous-flow drying systems are employed in the U. S. rice
industry: crossflow, mixed-flow and concurrent flow/counterflow dryers. Each
type is schematically illustrated in Fig. 7.

Rice is dried in several passes in a continuous-flow dryer in order for the rice
to maintain a high head yield. The tempering time between successive drying
passes is 1-24 hours, depending on the average rice temperature and the rice
temperature uniformity. The logistics of multi-passing is complex because a
sufficient number of bins has to be available to allow the tempering of the
partially-dried rice with kernels at different moisture contents for the required
period of time,

1. Crossflow and Mixed-Flow Dryers

The distinguishing design of crossflow rice dryers is the perpendicular direction
of the kernels and the drying air. This results is non-uniform drying of the rice.
Recent improvements in the basic crossflow design have improved the grain-
quality characteristics. In a conventional crossflow dryer, the discharged air is
only partly saturated. Recycling part of the drying air, and all of the cooling air,
significantly decreases the energy requirement. Along with air recycling,
airflow reversal has been incorporated in many crossflow dryers in order to
offset the moisture and temperature differentials in the grain column (see Fig.
8). Placing one or more grain inverters in the grain column is similarly
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Fig. 7. Schematic of the four continuous-flow rice drying /cooling systems.

effective. Grain inverters turn the overheated grain at the air-inlet side to the
air-exhaust side of the column, and thus lessen overdrying /overheating.

In a mixed-flow dryer, the rice kernels are dried by a mixture of crossflow,
concurrent flow and counterflow processes. The rice flows over a series of
alternate inlet and exhaust air ducts (see Fig. 9). This results in fairly uniform
drying, and therefore a relatively uniform rice moisture content and quality.
The drying temperature in mixed-flow dryers is higher than in crossflow ones
because the rice is not subjected to the high temperature for as long.

Crossflow rice dryers (also called columnar dryers in the rice industry) are
the most popular in the united states; mixed-flow dryers are used elsewhere in
the world. Slightly higher drying-air temperatures are used in mixed-flow rice
dryers (i.e. 40~45C) than in crossflow models (i.e. 35~40C).
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Fig. 8. Crossflow rice dryer with grain exchanger and cooling-air recirculation.

In general, the amount of moisture removed from rough rice per pass in a
crossflow or mixed-flow dryer should be limited to 1.0~2.0 percentage points
(w.b.). Only during the first pass, since the rice is cool and relatively high in
moisture and the drying-air temperature is 50~60%C, 18 this wvalue increased
to 2.5~3 percentage points. The retention time of the rough rice in these dryers
should not exceed 20~30 minutes per pass; the exit kernel temperature should
not surpass 35¢. Due to the nonuniformity of the dryer-exit kernel moisture
content, the tempering time between passes in crossflow and mixed-flow dryers
is usually selected to be 6~24 hours.
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Fig. 9. Mixed-flow rice dryer.

The drying of medium-grain rice from a moisture content of 24.9% to 13.6%
in a commercail crossflow dryer under California conditions is illustrated with
an example in Table 11. Eight passes were required; in the last pass, the rice
was cooled to ambient temperature. The rice remained in the dryer for 21
minutes during each pass. The drying-air temperature was 36~407, except in
the first pass when 58°C was employed; the average temperature of the rice
exiting the dryer was 35%C. The rice was tempered for at least 24 hours between
passes. The head yield decreased from 56.9% to 55.2%: the total yield did not
change.

Rice is usually dried in crossflow and mixed-flow dryers in fewer than eight
passes. Even 25% moisture content rice is dried by most dryer operators in no
more than five or six passes, even though the decrease in head yield is, in
general, lessened by increasing the number of passes, The additional cost of an
extra drying pass has to be weighted against the higher price to be received for
the rice.

2. Concurrent/Counterfilow Dryers

A concurrent /counterflow dryer has one or more concurrent-flow drying
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Table 11. Multi-pass drying of medium - grain rice in a commercial crossflow dryer.

AR HEAD TOTAL
P:g.s TEMPERATURE (%Mv‘ib. ) YIELD YIELD
, (°c) (%) (%)
0 - 24.9 56.9 68.0
1 58 22.1 - -
2 40 205 - -
3 38 18.8 - -
4 BT 17.4 56.6 | 682
5 3 16.3 - -
6 36 15.1 - -
7 36 14.2 - -
8 22 13.6 55.2 680 |

Source : Unpublished data of tests by the author.

sections, and one counterflow cooler. In a concurrent-flow section the grain and
drying air flow in the same direction, in the counterflow cooler in the opposite
direction, With the exception of a small one-stage on-farm concurrent-flow
(CCF) model, concurrent-flow rice dryers have two or three concurrent-flow
drying zones. A tempering zone is located between successive drying sections,
Fig. 10 is a schematic of a two-stage concurrent-flow rice dryer with
counterflow cooling; a tempering section is located between the two drying
stages.

The most distinguishing feature of the concurrent /counterflow dryer is the
uniformity of the drying process, Every kernel undergoes the same heating /
drying /tempering /cooling treatment, unlike in crossflow and mixed-flow
dryers, The drying-air temperature is much higher than in the other dryers
because the wet rice is subjected to the hot drying air not for hours (crossflow
dryers) or minutes (mixed-flow dryers), but only seconds, Therefore, the rice
does not equilibrate to the temperature of the drying air, as it does in the two
other dryer types.

The uniform, relatively gently drying and cooling processes in CCF dryers,
and the built-in tempering treatment(s), result in dried rice of superior quality.
The head-yield of rice dried in CCF dryers is generally higher than that of rice
dried in mixed-flow and crossflow dryers,

The drying-air temperatures in a CCF rice dryer are 65~175°%C, and thus are
substantially higher than in crossflow and mixed-flow rice dryers. To maintain
the quality of the rice, the maximum amount of moisture to be evaporates in
one CCF drying stage should not surpass 1.5~2.0%. The time period during
which moist rice is subjected directly to the hot drying air should be limited to
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Fig. 10. Two-stage concurrent-flow rice dryer with air recirculation.

15~20 s, and the rice temperature in the tempering zones should not exceed 43
. These requirements are met in a three-stage CCF dryer operating at air
temperatures of 150~175%C, 100~150¢C, and 75~125%, respectively, in the
first, second, and third stages, and at a grain velocity of 5~7 m/hr. The
tempering time between drying stages at this grain velocity is approximately 1
hour, which is sufficient due to the uniformity of the kernel temperature and
moisture content of the rice entering the tempering zone.” Table 12 shows
experimental data for the drying of 23.5% moisture content medium-grain rice
to 13.5% in a three-stage CCF dryer. Two passes are required; in the first pass
5.4% of the moisture is removed, in the second pass 4.6%. The drying-air
temperature in each stage is higher during the first pass than during the second
because more water is evaporated from the rice during the first pass through
the dryer. Notwithstanding the use of very high drying-air temperatures, the
head yield decreased by only 1.3%.

In general, the number of passes to dry rice in a three-stage concurrent-flow
dryer is one-third of that required in either a crossflow or mixed-flow dryer,
assuming the resulting grain quality is comparable,
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Table 12. Dryer settings for a three-stage concurrent - flow dryer with medium-grain rice
using a double-pass system.

DRYING PASS FIRST ‘ SECOND
Initial moisture content (% w.b.) 23.5 18.1
Grain velocity (m/hr) 4.0 4.7
FIRST STAGE
Inlet air temperature (C) 150.0 130.0
Airflow rate (m?/min - m?) 40.0 35.0
Outlet moisture content (% w.b.) 21.7 16.6
Maximum rice temperature () 54.0 59.0
Qutlet rice temperature (C) 38.0 44.0
SECOND STAGE
Inlet air temperature {(¢) 130.0 110.0
Airflow rate (m?®/min - m?) 35.0 35.0
Outlet moisture content (% w.b.) 19.6 15.2
Maximun rice temperature () 60.0 59.0
Qutlet rice temperature (C) 41.0 43.0
THIRD STAGE
Inlet air temperature () 100.0 100.0
Airflow rate (m?/min - m?) 35.0 35.0
Qutlet moisture content (% w.b.) 18.1 14.0
Maximun rice temperature (¢C) 55.0 56.0
Qutlet rice temperature () 39.0 42.0
COOLING STAGE
Inlet air temperature () - 20.0
Airflow rate (m*/min - m?) - 20.0
Final moisture content (% w.b.) 18.1 13.5
Dryer energy efficiency (kJ /kg) 4,453 4,158

Source : Brooker et al. (1992).

V. Storage Management

The objective of proper rice-storage management is to maintain, throughout
the storage period, the characteristics that the rice possesses immediately
following harvesting and drying. The principal sources of the loss in quality and
quantity of rice during storage are molds, insects, mites and rodents,
Respiration may contribute to a loss in dry matter; the losses due to respiration
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are usually minor compared to those caused by living organisms.

In the U. S. A, rice is stored in concrete silos and in metal bins, Concrete
silos are expensive but rice near the silo walls is not affected as much by
changes in the ambient temperature than is the case in metal bins, However,
proper aeration is able to minimize non-uniformity in the rice temperature in
metal bins.

In the United States, rice on farms is usually stored in round flat-bottomed
corrugated steel bins with a diameter of 5.54 m to 11.0 m; at a grain depth of
5.5 m, their holding capacity is between 75 MMT and 300 MMT of rough rice.
The bins are filled with inclined screw conveyors, belt conveyors and bucket
conveyors, and are provided with fully perforated floors or with air ducts for
drying and /or aeration. Grain spreaders are often employed to prevent fines
* from collecting under the loading spout. Before the rice is loaded into a bin, it is
cleaned. The unloading of a bin requires a sweep auger and an underfloor auger.

Rough rice in the U. S. A. is sorted for periods varying from a few weeks to
several years, Regardless of the length of storage, grain pests can invade the
stored rice, The degree of pest activity is mainly affected by (1) the rice
moisture content, (2) the rice temperature, (3) the foreign-material level in the
grain mass, and (4) the rice hybrid. '

The rice moisture content and temperature can be controlled by practicing
the proper drying and aeration techniques, the foreign material by adequate
grain cleaning. The engineer usually has no control over the choice of the rice
hybrid.

1. Ambient-Air Aeration

The main objective of aeration is to maintain rice stored at 12~14%
moisture content to within 3~6°C of ambient. The process of aeration consists
of blowing ambient air through the grain mass at an airflow rate of 0.01~0.10 m?
/min-tonne, An aeration controller decides if, when, and for how long blowing
is needed,

The most sophisticated programmable aeration controllers used in the U, S,
A. measure the temperature and relative humidity of the ambient air and the
temperature and equilibrium relative humidity of the rice. Two probe locations
are employed: (1) at the entrance to the fan, and (2) at that location in the bin
in which the rice is most likely to heat up and spoil (i.e. the area with the least
airflow, in the center of the bin about 30 cm under the grain surface). The
controller can be programmed for the rice temperature and the moisture
content to be maintained. With this information, the microprocessor of the
controller calculates the target equilibrium relative humidity to be kept in the
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interstices of the rice mass.

Less sophisticated aeration controllers base their decisions solely on the air
and rice temperatures, Their advantage is that they are not affected by the
drift of a sensor, as is invariably the case with aeration controllers that require
the relative humidity of the air as an input parameter.

Operation of the aeration fans is controlled by the control strategy
programmed into the software of the microprocessor of a controller. There are
several levels of complexity used in commercial aeration controllers. Two levels
are illustrated by the following examples:

1) Operation of the fan.

a. If the relative humidity of the ambient air is below 65%.

b. If the air temperature is 8°C below the rice temperature.

c. If the electricity rate is a minimum.

2) Operation of the fan according to certain rules,

a. The fan is run continuously as long as the maximum rice temperature
is at least 8.0°C above a preselected rice temperature [e.g. 7], and if

“the ambient relative humidity is below 90% and the ambient
temperature is at least 3¢ below the average rice temperature.

b. The daily fan operation period is limited: it depends on the difference
between the measured average rice temperature and a preselected
temperature, and on the difference between the measured (and
calculated) rice equilibrium moisture content and the target rice
moisture content,

¢. A running account is kept of the backlog hours if the weather
conditions do not allow operation of the fan during long periods; as
the backlog increases, the temperature-humidity range under which
fan operation is acceptable is automatically widened.

Many aeration systems in the U. S. A. are still controlled manually or, at
most, with a humidistat. The automatic controllers discussed constitute a
substantial improvement over manual-humidistat control in terms of improved
mold and insect control, less overdrying, and 10~20% less electrical
consumption because of decreased fan operation.

2. Chilled Aeration

Aeration with ambient air permits the cooling of a bin /silo of rice to within
several degrees of the minimum ambient temperature. In some rice-growing
areas of the U. S. A., stored rice cannot be cooled immediately to 10 to 15¢C by
aeration with ambient air. Chilled aeration is able to do so, and therefore is now
used at some rice-processing facilities in the U. S. A.
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Chilled aeration is defined as the cooling of a lot of grain to below the
ambient temperature, A grain chiller is employed in the chilled-aeration
process. In a grain chiller, ambient air is ducted first over a bank of
refrigerated coils to decrease the temperature, and subsequently over an
electric heater to reheat the chilled air a few degrees in order to reduce the
relative humidity from 100% to 60~75%. Thus, the temperature and relative
humidity of the air in a grain chiller are set by the operator. Once the rice has
been initially cooled to 10~15°C, only occasional rechilling for short periods of
time is required to maintain the optimum storage conditions,

Fig. 11 is an example of the use of chilled aeration in cooling 175 MMT of
milled rice in a concrete silo from 26~29°C to 11~12%C within 48 hours (Maier,
1994). The airflow rate was about 0.6 m?/min. tonne. The grain chiller
controlled the temperature to £0.5¢C and +2% of the setpoints.

30

Rice Temperature [C]

N

10 L] T L4 T ¥ T T v

0 6 12 18 24 30 36 42 48 54 60

Hours From Start Time

Fig. 11. Temperatures of milled rice conditioned with the Chilled Air Aeration and
Conditioning System ( AAG Manufacturing, Milwaukee, Wisconsin, U. S. A.)
operating at a commercial rice processing facility in California in 1993.

VI. Auxiliary Factors

Physical, biological, economic and human factors affect the performance of
rice drying /storage systems. Each can have a significant impact on
throughput, energy efficiency and grain quality of a system, and therefore are
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considered in the U. S. A. in the engineering evaluation,

The climate determines the type of hybrid that can be grown in a particular
region, the expected moisture content range, and the weather at harvest. The
initial grain moisture content and rice temperature have a significant effect on
dryer performance. Not only are dryer throughput, energy consumption and rice
quality influenced by the initial moisture content /temperature, but also the
operating costs. When rice is harvested about or below its optimum harvest
moisture, the quality losses during drying increase. Thus, in regions where the
harvest moistures frequently exceed the optimum value, rice quality is
negatively affected.

In certain years, rice reaches the dryers at excessively high moistures due to
wet weather. This leads to lower dryer capacity, higher energy consumption,
and decreased rice quality. Weather conditions have a direct effect on the
performance of in-bin natural-air and low-temperature dryers. These low-
capacity systems may not be able to dry wet rice before molding sets in.
Continuous-flow high-temperature systems are less directly affected by weather
conditions,

Economics can affect dryer costs by influencing fuel prices and availability.
The relative prices of natural gas, fuel oil, liquid propane, coal and electricity
vary from year to year. At the present time, natural gas is the least expensive
and electricity the most expensive energy source in the United States. The
type of fuel affects dryer operation because it influences burner effciency and
drying-air quality. :

Rice drying is a complicated heat /mass /momentum transfer process of a
heat-sensitive biological product, and 1s not well understood by the average
dryer operator. At many U. S. commercial handling facilities, the dryer
operator job is seasonal: it requires 12-hour days, 7 days a week, for only 2 to 3
months. The job training is usually by trial and error. Therefore, it is not
surprising that dryer operation is far from optimal. Proper operation affects the
performance of the typical dryer with respect to capacity, energy efficiency,
and rice quality. The most frequent mistake is using excessively high
temperatures in order to increase dryer capacity.

Moisture meters are an integral part of the rice drying /storage system,
Electronic meters are used at all U, S. rice handling facilities, Meters havé an
accuracy of £1 percent at the 13 to 20 percent moisture range, and only +2.5
percent at higher moistures. This contributes substantially to overdrying or
underdrying of rice.

Air temperature measurement in a rice dryer 1s frequently accomplished in
the U. S. A by a single thermocouple or thermistor, an acceptable practice
when the temperature distribution in the dryer plenum is uniform., However, in
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many off-farm dryers and on-farm models, temperature differences of 20 to 35¢
in the plenum are not uncommon, resulting in overheating of part of the grain
column and deterioration of the average rice quality. Therefore, multiple
temperature measurement is now practiced at U. S. drying installations,

The cleaning of rice prior to drying is not a comrnon practice (yet) in the U.
S. A. Cleaned rice results in a more uniform airflow in the dryer and in the
storage bin, and thus in a more uniform moisture content of the rice. Also,
cleaning leads to a decrease in the static pressure, and thus in an increase in
the airflow in the dryer and during aeration, Finally, cleaning grain before it
enters the dryer decreases the air pollution, an ever more important
consideration in the application of technology in the U. S. A,
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Table 1. Production (MMT) of major grain crops in the US.A. and the world in

1990-1991.
US.A WORLD
MAIZE 201 470
RICE 7 518
SOYBEANS 52 115
WHEAT 79 592

Source : USDA (1993).

Table 2. Rice production (MMT) in different countries.

KOREA JAPAN U.S.A CHINA
1988 /89 8.4 12.4 7.3 169.1
1990 /91 7.7 13.1 7.1, 189.3
1992 /93 7.3 13.2 8.1 186.2
1993 /94 6.4 10.3 7.5 177.1

Source: World Grain (1994).
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Table 3. U.S. production (MMT) of long and medium/short rice.

B¢ AA 2w S dAE

1988 /89 5.3 1.8
1990 /91 4.8 2.1
1992 /93 5.7 2.7
1993 /94 5.2 2.2
Source : World Grain (1994).
Table 4. Rice exports (MMT) of the U.S.A and Thailand.
U.S.A. THAILAND
1988 2.2 4.8
1990 2.4 3.9
1992 2.1 4.8
1993 2.5 4.3
Source : World Grain (1994).
Table 5. The type of U.S. rice exports (MMT).
ROUGH MILLED BROWN PARBOILED
1988 /89 0.1 1.4 0.3 0.8
1990 /91 0.2 0.8 0.4 0.8
1991 /92 0.2 0.7 0.3 0.8
Source : USDA (1993).
Table 6. The world-market prices ( $/MMT) of different types of rice.
LONG MEDIUM SHORT BROKEN
12 /88 210 194 192 105
12/90 182 161 160 91
12/92 190 172 171 95
Source : USDA (1993).
Table 7. World rice stocks (MMT).
' 1988 478
1990 59.5
1992 52.4
1993 44.9

Source : World Grain (1994).
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Table 8. Moisture content distribution of five fractions in a freshly harvested
sample of long-grain rice at an average moisture content of 19.8%; (w.b.).

SCREEN SIZE AMOUNT RETAINED MOISTURE CONTENT
(mm) (%) (% w.b.)

1.98 x 12.70 78.5 19.2

1.93 x 19.05 | 7.0 20.1

1.78 x 12.70 10.0 21.2

1.63 x 9.53 3.6 23.1

1.55 x 12.70 0.9 27.1

Source : Chau and Kunze (1982).
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Fig. 1. Head yields of the long-grain variety L-202 compared with the short-grain variety
S-201 and the medium-grain variety M-201 when harvested at various moisture
contents. ' -
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Table 9. Recommended airflow for the in-bin natural-air drying of long-grain rice in

Arkansas.
MC INITIAL AIRFLOW MC INITIAL AIRFRLOW
(% w.b.) (m?/min. tonne) (% w.b.) (m¥min. tonne)
15 ~ 18 2 20 ~ 22 4
18 ~ 20 3 above 22 6

Source : Siebenmorgen et al. (1991).
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Fig. 2. On-farm in-bin and non-bin grain drying systems (Brooker et al., 1992).
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Fig. 3. In-bin natural-air /low-temperature rice dryer (MWPS, 1989).
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Fig. 4. In-bin counterflow grain dryer.
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Fig. 5. Top-bin rice drying system.

Table 10. Approximate operating conditions of the TB/IBCF drying system in drying
long - grain rice from 24% to 13% (w.b.).

AR /GRAIN BIN 1 BIN 2 BIN 3
CONDITION | TB IBCF ™ IBCF B IBCF
AIR TEMP 52 27 | 46 27 41 27
(r)
AIRFLOW
(m®/min. tonne) 50 1 50 1 50 1
" OUTLET MC
(AVERAGE, %) 20 19 16 15 13.5 13
OUTLET TEMP
(AVERAGE, °C) 41 27 39 28 37 28

Source : Bakker-Arkema and Hines (1993).

o ANAx Al 29 AW 2 AdMYF (top-bin /in-bin-counterflow)
Alagle g gejed A A2 AN F 9 AN EE Axy e A
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9] 33y 3, A9 @44 Y AVd A AF A ARNEE QD gL
o] AEE A= glek. ZHzhe] vlAdFe| 498l 277} (top-bin, TB), %3}
F-o AW F 1 27]7} (in-bin counterflow, IBCF) et 24, Az EF 344
MM F2 F5E] do] AN dAY] Az U FF A E LEE FHoiglrh
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Fig. 7. Schematic of the four continuous-flow rice drying /cooling systems.
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Table 11. Multi-pass drying of medium - grain rice in a commercial crossflow dryer.

AR HEAD TOTAL
Psg's TEMPERATURE (%Mvib_) YIELD YIELD
(°c) (%) (%)
0 - 24.9 56.9 68.0
1 58 22.1 - -
2 40 20.5 - -
3 33 18.8 - -
4 38 17.4 56.6 68.2
5 38 16.3 - -
6 36 15.1 - -
7 36 14.2 - -
8 22 13.6 55.2 68.0

Source : Unpublished data of tests by the author.
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Fig. 10. Two-stage concurrent-flow rice dryer with air recirculation.
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Table 12. Dryer settings for a three-stage concurrent - flow dryer with medium-grain rice
using a double-pass system.

DRYING PASS FIRST SECOND
Initial moisture content (% w.b.) 23.5 18.1
Grain velocity (m /hr) 4.0 4.7
FIRST STAGE
Inlet air temperature (¢) 150.0 130.0
Airflow rate (m®/min - m?) 40.0 35.0
Qutlet moisture content (% w.b.) 21.7 16.6
Maximum rice temperature (<) 54.0 59.0
Qutlet rice temperature () 38.0 44.0
SECOND STAGE
Inlet air temperature () 130.0 110.0
Airflow rate (m?/min - m?) 35.0 35.0
Qutlet moisture content (% w.b.) 19.6 15.2
Maximun rice temperature (C) 60.0 59.0
Qutlet rice temperature (C) 41.0 43.0
THIRD STAGE
Inlet air temperature () 100.0 100.0
Airflow rate (m?/min - m?) 35.0 35.0
Qutlet moisture content (% w.b.) 18.1 14.0
Maximun rice temperature () 55.0 56.0
Qutlet rice temperature () 39.0 42.0
COOLING STAGE
Inlet air temperature () - 20.0
Airflow rate (m?/min - m?) - 20.0
Final moisture content (% w.b.) 18.1 13.5
Dryer energy efficiency (kJ/kg) 4,453 4,158

Source : Brooker et al. (1992).
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Fig. 11. Temperatures of milled rice conditioned with the Chilled Air Aeration and
Conditioning System (AAG Manufacturing, Milwaukee, Wisconsin, U. S. A.)
operating at a commercial rice processing facility in California in 1993.
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