• Title/Summary/Keyword: Drying Temperature

Search Result 1,493, Processing Time 0.025 seconds

Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe)

  • Ok, Seon;Jeong, Woo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.166-171
    • /
    • 2012
  • 6-Shogaol, a dehydrated form of 6-gingerol, is a minor component in ginger (Zingiber officinale Roscoe) and has recently been reported to have more potent bioactivity than 6-gingerol. Based on the thermal instability of gingerols (their dehydration to corresponding shogaols at high temperature), we aimed to develop an optimal process to maximize the 6-shogaol content during ginger extraction by modulating temperature and pH. Fresh gingers were dried under various conditions: freeze-, room temperature (RT)- or convection oven-drying at 60 or $80^{\circ}C$, and extracted by 95% ethanol at RT, 60 or $80^{\circ}C$. The content of 6-shogaol was augmented by increasing both drying and extraction temperatures. The highest production of 6-shogaol was achieved at $80^{\circ}C$ extraction after drying at the same temperature and the content of 6-shogaol was about 7-fold compared to the lowest producing process by freezing and extraction at RT. Adjustment of pH (pH 1, 4, 7 and 10) for the 6-shogaol-richest extract (dried and extracted both at $80^{\circ}C$) also affected the chemical composition of ginger and the yield of 6-shogaol was maximized at the most acidic condition of pH 1. Taken together, the current study shows for the first time that a maximized production of 6-shogaol can be achieved during practical drying and extraction process of ginger by increasing both drying and extracting temperatures. Adjustment of pH to extraction solvent with strong acid also helps increase the production of 6-shogaol. Our data could be usefully employed in the fields of food processing as well as nutraceutical industry.

Effect of Freeze Drying Condition of WO3/Tert-Butyl Alcohol Slurry on the Microstructural Characteristics of Porous Body (WO3/tert-butyl alcohol 슬러리의 동결건조 조건이 다공체의 미세구조 특성에 미치는 영향)

  • Lee, Eui Seon;Heo, Youn Ji;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.331-335
    • /
    • 2021
  • The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800℃ for 1 h and sintered at 1000℃ for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tert-butyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10vol%. As the drying temperature of the frozen body increased from -25℃ to -10℃, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.

Measuring Temperature on Wood Surface at the Beginning of Drying Using IR Image Measuring System (적외선 화상처리 장치를 이용한 건조초기 목재 표면 온도 측정)

  • Lee, Kwan-Young;Kang, Ho-Yang;Lee, Min-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.79-85
    • /
    • 2006
  • Temperature of board surface was monitored during drying using an IR image measurement system. Boards were water-saturated and dried at the levels of four temperatures and three air velocities. At higher DB the surface temperature increased more steeply and level off period was significantly short. At the DB temperatures of 70, 80, $90^{\circ}C$ the period where the surface temperature was equivalent to WB temperature was constant regardless of air velocity while at $60^{\circ}C$ it decreased as air velocity increased. It was confirmed that a surface transfer coefficient increased with DB temperature. Variation of temperature profile on a wood surface increased with DB temperature and air velocity.

  • PDF

Drying and Antioxidant Characteristics of the Shiitake (Lentinus edodes) Mushroom in a Conveyer Type Far-Infrared Dryer (컨베이어 원적외선 건조기를 이용한 표고버섯의 건조 및 항산화 특성)

  • Li, He;Choi, Young-Min;Lee, Jun-Soo;Park, Jong-Soo;Yeon, Kwang-Seok;Han, Chung-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.250-254
    • /
    • 2007
  • In an attempt to find ways of improving the quality of dried Shiitake mushroom, this study compared a conveyer-type far-infrared drying method with a traditional heated air drying method. The conveyer-type far-infrared dryer was performed at air velocity of 0.6 and 0.8 m/s under drying air temperature of 60, 70 and $80^{\circ}C$, respectively. Drying characteristics, antioxidant activities and the antioxidant compounds of Shiitake mushroom dried by far-infrared dryer were investigated. Generally, drying rate with the conveyer-type far-infrared drying method was faster than that with the traditional heated air drying method. In the conveyer type far infrared drying method, drying rates were increased with increasing temperature and air velocity. The loss of antioxidant activities during the conveyer-type far-infrared drying method at 60-0.6, 60-0.8, and $70^{\circ}C-0.6m/s$ was less than the traditional drying method. However, the loss of antioxidant activities at 70-0.8, 80-0.6, and $80^{\circ}C-0.8m/s$ was higher than that of the traditional drying method. Therefore, the conveyer type far infrared drying conditions with below $70^{\circ}C$ and 0.6 m/s air velocity may produce dried Shiitake mushroom with relatively higher antioxidant activities and antioxidant compounds.

Analysis of Heat Transfer and Drying Characteristics in the Dryer Using the Refraction of Radiation (적외선 굴절식 건조기에서 열전달 및 건조 특성 해석)

  • Lee Kong-Hoon;Hong Yong-Ju;Kim Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.678-685
    • /
    • 2006
  • Analysis of drying characteristics has been carried out with one-dimensional model in the dryer using the principle of the refraction of radiation. The dryer is composed of hot water tank, plastic film conveyer belt, drying material, etc. The model considers the con-duction and radiation within the plastic film and drying material. The film is semitransparent to radiation and the drying material is assumed to be semitransparent or opaque to radiation. The results show that the effect of radiative transfer on the drying rate is relatively large when the thickness of drying material is small and the water temperature is high. When the material is thin, the drying rate due to conduction is also enhanced and the drying time can considerably be reduced.

Heat Treatment and Drying Methods of Small-Notched Bamboo for Vertical Flute (단소용 대나무재의 열처리 및 건조)

  • 변희섭;오승원;공태석;김종만
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.3
    • /
    • pp.10-17
    • /
    • 2002
  • This study was carried out to investigate a heat treatment condition and suitable drying schedule of bamboo material(Phyllostachys nigra var. henonis) for a vertical flute with small-notched bamboo. It is very important to prevent drying defects during its drying process. We investigated the effort of heat treatment the most suitable drying schedule for small-notched bamboo vertical flute without drying defects in this research. A direct heat treatment method and drying conditions of 3($20^{\circ}C$ 65%, $40^{\circ}C$ 40%, and dry at air condition) were applied to the Bamboo specimen that felled in several areas for a month. The result suggested that the most suitable drying schedule with the less split and the shortest time was to dry at $40^{\circ}C$, 40% condition and it was useful to direct heat-treatment because of reducing the number and size of split during drying bamboo.

  • PDF

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

  • Lee, Jin-Ho;Doolittle, James J.;Lee, Do-Kyoung;Malo, Douglas D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2006
  • Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

Drying and Shrinking Characteristics of Food 2. Influencing Factors in Drying and Shrinking Characteristics of Sea Tange (식품의 건조 및 수축특성에 관한 연구 - 2. 다시마의 건조 및 수축특성에 영향을 미치는 인자 -)

  • CHO Duck-Jae;HUR Jong-Hwa;CHUNG Soo-Yeol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 1988
  • Square slices of sea tangle was dried in hot air drier that could be controlled air temperature, relative humidity and air velocity. Under various drying conditions, drying and shrinking characteristics were investigated. 1) During drying sea, tangle, the constant rate period was nonexistant and the falling rate could be devided into a 2 periods, namely, a first falling rate period and a second falling rate period. 2) The tip part was proceeded more shrinkage than base part, and under drying condition of air temperature $50^{\circ}C$, relative humidity $30\%$, air velocity 0.4m/s, when the moisture content was reduced to $20\%$, the shrinking ratio of tip part, middle part and base part were 57.5, 54.0 and $42.7\%$, respectively. 3) The drying shrinking and drying rate increased with decreasing relative humidity, but when the moisture content was reduced to $20\%$, the shrinking ratio increased with increasing relative humidity.

  • PDF

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.