• Title/Summary/Keyword: Drying Shrinkage Crack

Search Result 132, Processing Time 0.026 seconds

Stress Analysis for Differential Drying Shrinkage of Concrete (콘크리트의 부등건조수축으로 인한 응력의 해석)

  • 김진근;김효범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.102-112
    • /
    • 1994
  • The drying shrinkage of concrete has a close relation to the water movement. Since the diffusion process of water in concrete is strongly dependent on the temperature and the pore humidity, the process is highly nonlinear phenomena. This study consists of two parts. The first is the development of a finite element program which is capable of simulating the rnoisture distri- ,bution in concrete, and the other is the estimation of the differential drying shrinkage and stress considering creep by using the modified elastic modulus due to inner temperature change and maturity. It is shown that the analytical results of this study are in good agreement with experlimental data in the literatures, and results calculated by BP-KX model. The internal stress caused by moisture distribution which was resulted from the diffusion process, was calculated :quantitatively. The tensile stress which occured in the drying outer zone mostly exceeded the tensile strength of concrete, and necessarily would result in crack formation.

Mock-up Test on the Reduction of Drying Shrinkage Crack in Structural Concrete (구조체 콘크리트의 건조수축 균열저감에 관한 Mock-up 실험)

  • Yoon Seob;Song Seung Heon;Han Min Cheol;Kim Kyeong Hwan;Jong Young Hee;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.393-396
    • /
    • 2005
  • This paper presents the results of drying shrinkage of concrete using shrinkage-reducingadmixture(DSRA) studied by the authors through mock-up test. DSRA is proportioned by expansive admixture and shrinkage reducing agent(SRA). Flowing concrete method is also applied to assist the concrete to reduce drying shrinkage by decreasing water content at the same time. The use of EA and SRA does not affect fluidity, bleeding and setting time. Compressive strength of concrete using EA along with SRA exhibited less than that of plain concrete. However, The compressive strength with combination of EA-SRA along with flowing concrete method shows comparable to that of plain concrete. The application of developed method can contribute to reducing drying shrinkage by as much as 30-40$\%$ compared with that of plain concrete.

  • PDF

Analysis of Crack Control Effect of Ultra-low Shrinkage Concrete through Wall Mock-up Test (벽체 실물대부재실험을 통한 초 저수축 콘크리트의 균열제어 효과 분석)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Ultra-low shrinkage concrete is very effective for securing the quality and appearance of a concrete structure because it can control the drying shrinkage cracks of the concrete structure to within a certain limit. In this study, with the purpose of commercializing ultra-low shrinkage concrete, the optimal amount of expansive agent and shrinkage reducing agent was determined through a lab test, and a concrete wall mock-up test was conducted to examine the shrinkage properties and crack control effects of ultra-low shrinkage concrete. As a result, it was confirmed that there was little drying shrinkage deformation in the wall specimen, and furthermore that no cracks were generated.

An Analysis of the Crack Cause of Concrete Faced Rockfill Dam (사력댐 차수벽 콘크리트의 균열원인 분석)

  • Chae, Young-Suk;Lee, Myeong-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.133-137
    • /
    • 2012
  • Cracking may be used to help predict the cause of deterioration of concrete, since in many cases characteristic cracking patterns are produced. The purpose of this paper is an analysis of the crack cause occurred in concrete faced rockfill dams. We analyzed the concrete placement methods, cracking pattern, the inspection of crack depth by the ultrasonic pulse velocity method, and the measurement of heat of hydration, environmental condition, and so on. In this study, the crack cause of concrete faced rockfill dam is the wrong method of concrete placement, high temperature difference by cement of heat of hydration and concrete of drying shrinkage.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

Distribution Model Based on Computer Simulation for Internal Temperature and Moisture Content in Press Drying of Tree Disks (원판(圓板)의 열판건조(熱板乾燥)에서 컴퓨터 시뮬레이션에 의한 내부온도(內部溫度)와 함수율(含水率) 분포모형(分布模型))

  • Yeo, Hwan-Myeong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.61-70
    • /
    • 1994
  • This study was executed to find the applicability of press drying of tree disk by investigating the shrinkage and drying defect and to form appropriate model by comparing the actual moisture content(MC) and internal temperature in respect of drying time with calculated values based computer simulation to which was applied finite difference method. In press drying disk, heating period, constant drying rate period maintained plateau temperature at 100$^{\circ}C$ and falling drying rate period were significantly distinguished. Actual MC and internal temperature were analogous to those calculated at comparing points. Heat transfer model formed by Fourier's law using specific heat of moist wood and conduction coefficient considering fractional volume of each element of wood cell wall, bound water, free water and air showed applicability as basic data to developing heat expansion, shrinkage and drying stress during press drying. Also mass transfer model formed by Fick's diffusion law using water vapor diffusion coefficient showed applicability. Longitudinal shrinkage was developed by pressure of hot press and tangential shrinkage was restrained by hygrothermal recovery. The heart check, surface check and ring failure were occurred differently in species, but V-shaped crack didn't develop.

  • PDF

Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete (콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과)

  • 원종필;박찬기
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

A Study on the Engineering Properties of Concrete according to Water Content (단위수량 변화에 따른 콘크리트의 공학적 특성에 관한 연구)

  • 이병상;김기정;양경석;심영태;정용희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.27-30
    • /
    • 2003
  • This study is investigated the various properties and drying shrinkage of concrete according to water content under the condition proper fluidity is adjusted, in order to suggest the method for reduction of crack by drying shrinkage. According to the results, though water content varies, slump and air content are satisfied to the planed values, but shear slump and separation happen at water content of 120 and 140kg/$m^3$ due to the overuse of superplasticizer(SP). As water content is diminished, setting time is retarded by an increase of the using amount of SP, and compressive and tensile strength increase in the range of 160-180kg/㎥ of water content, but decrease significantly at 120 and 140kg/$m^3$. Length change by drying shrinkage decrease with a decrease of water content. Therefore, considering not only drying shrinkage but also fluidity, setting time and strength, it proves that the most appropriate water content of concrete is 160kg/$m^3$ in the condition of this experiment.

  • PDF

Stress Analysis for Differential Drying Shrinkage of Concrete (콘크리트의 부등건조수축으로 인한 응력의 해석)

  • 김진근;김효범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.155-162
    • /
    • 1994
  • The drying shrinkage of concrete has a close relation to the water movement, Since the diffusion process of water in concrete is strongly dependent on the temperature and pore humidity, the process is highly nonlinear phenomena. It is shown that the analytical results of this study are in good agreement with experimental data in the literatures, and results calculated by BP-KX model. The internal stress caused by moisture distribution which was resulted from the diffusion process, was calculated quantitatively. The tensile stress which occurred in the drying outer zone mostly exceeded the tensile strength of concrete, and necessarily would result in crack formation.

  • PDF

Drying Shrinkage Characteristics of the Concrete Incorporated Shrinkage Reducing Agent According to Mixed Proportion of Concrete (콘크리트 배합조건에 따른 수축저감제의 건조수축 특성)

  • Kim, Young-Sun;Kim, Kwang-Ki;Park, Soon-Jeon;Kim, Jung-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.245-252
    • /
    • 2017
  • Recently, structures such as large retailers, outlets and warehouses have been increasing in accordance with changes in consumption patterns. Since these structures include ultra-flat slab members, they are thoroughly managed to control slab cracking by the plastic and drying shrinkage. In order to control the cracking of the slab member, a chemical crack reduction method is used. In particular, the use of the shrinkage reducing agent has been examined. However, domestic research results are limited. In this study, the shrinkage properties of concrete using shrinkage reducing agent and the drying shrinkage properties according to the mixing factors were investigated. The performance of domestic shrinkage reducing agent was appeared similar to that of overseas high-grade shrinkage reducing agent. As the shrinkage reducing agent usage increased, the drying shrinkage reduction effect increased. At the age of 100 days, the dry shrinkage rate of specimen with the shrinkage reducing agent of 1.5%was shown about half that of the specimen without the shrinkage reducing agent. The shrinkage reducing agent was gound to have no specific performance change for the use of the admixture.