• Title/Summary/Keyword: Drying Model

Search Result 414, Processing Time 0.024 seconds

Prediction Model for the Change of Temperature and R.H. inside Reinforced Concrete (철근콘크리트 내부 온습도 경시변화 추정 모델 구축)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.83-84
    • /
    • 2016
  • Surplus water inside a concrete other than moisture that is used for hydration of the cement affects the physical properties of the concrete (modulus of elasticity, compressive strength, drying shrinkage, and creep) by drying. Changes in temperature and humidity inside a concrete has correlation with the movement speed and reaction rate of deterioration factors such as carbon dioxide and chloride ions. In this study, comparison was performed between temperature and relative humidity inside the concrete and meteorological data for exposure environment through measurement at the site for two years. Surface temperature of the concrete (depth 1cm) was measured higher by 6℃ during the summers, while it was measured lower by 2℃ during the winters due to solar radiation, wind, and radiation cooling. As for relative humidity, change was large in the depth of 1cm, while more than 85% was maintained in the depth of 10cm.

  • PDF

Adsorption Characteristics of Soybean Curd Powder Prepared with Various Drying Methods during Storage (건조방법을 달리한 두부분말의 저장 중 수분흡습 특성)

  • Lee Sang-Duck;Kim Jin-Sung;Kim Jun-Han;Ha Young-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.5
    • /
    • pp.457-462
    • /
    • 2004
  • Physical properties of soybean curd powder prepared with hot air, vacuum and freeze drying methods were investigated. Adsorption characteristics were studied under various water activities (such as 0.11, 0.33, 0.44, 0.55, 0.66, 0.75, 0.85, and 0.93) at 5℃, and prediction models were developed. Equilibrium moisture and monolayer moisture contents were the highest when freeze dried. due to the porous structure. In this result, Oswin model was the best fit for the isotherm of soybean curd. Sorption enthalpy indicated that high moisture content of powder showed lower sorption than that of low moisture content.

  • PDF

Hysteresis of the Suction Stress in Unsaturated Weathered Mudstone Soils (불포화 이암풍화토에서의 흡입응력 이력현상)

  • Song, Young-Suk;Choi, Jin-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • To investigate the hysteresis of the suction stress in unsaturated weathered mudstone soils (CL), matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. The drying and wetting processes in unsaturated soils were reproduced in the test; the drying process means to load matric suction to spill pore water from the soils, and the wetting process means to unload matric suction to inject pore water into the soils. Based on the measured result, Soil Water Characteristic Curve(SWCC)s were estimated by van Genuchten model (1980). SWCCs have nonlinear relationship between effective degree of saturation and matric suction. The hysteresis in SWCCs between drying and wetting processes occurred. As a result of estimating Suction Stress Characteristic Curve(SSCC) using Lu and Likos model (2006), the suction stress rapidly increased in the low level of matric suction and then increased slightly. Also, the hysteresis in SSCCs between drying and wetting processes occurred. In order to design geo-structures and check its stability considering unsaturated soil mechanics, therefore, it is more reasonable that the SSCC of drying process should be applied in the condition of rainfall infiltration and the SSCC of wetting process in the condition of evaporation or drainage.

Design and Evaluation of a Microcomputer-based Vacuum Drying System for Shiitake Mushrooms (마이크로컴퓨터 시스템을 이용한 표고버섯의 감압건조에 대한 연구)

  • Choi, Jae-Yong;Kim, Kong-Hwan;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 1987
  • Strain gauges attached on the Bourdon tube and load cell were used as the sensors for measuring the vacuum pressure in drying chamber and the weight loss of Shiitake mushrooms respectively. The vacuum drying system was interfaced further with the Bear II microcomputer. The interface devices used were built with such IC chips as MC 6821, ADC 0809, SN 74244 and SN 7424. The relationship between readings of vacuum gauge (P, mmHg) and digital outputs (D) from the microcomputer was represented by P =3.08 D-13.4875(r=0.9999). The weights of drying sample (W) were also related with the digital outputs (D) by W=0.4076 D-6.4762 (r=0.9999). During the vacuum drying of Shiitake mushrooms. the data on pressure and weight were recorded at regular intervals using an acquisition program on the microcomputer system. The Page model was fitted well to the drying data of Shiitake mushrooms. resulting in the following empirical equations : $(M-M_e)/(M_o-M_e)=\exp(-0.1569t^{1.0048})$ at 400 mm Hg up to 14 hours and $(M-M_e)/(M_o-M_e)=\exp(-0.1385_t^{1.2688})$ at 600 mm Hg up to 8 hours.

  • PDF

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Analysis of Thermal Effect on Tension of a Moving Web in Roll-to-Roll Printed Electronics (롤투롤 인쇄 전자 시스템에서 유연기판의 열변형을 고려한 웹의 장력거동 분석)

  • Lee, Jong-Su;Lee, Chang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-15
    • /
    • 2013
  • Roll-to-roll printing technology has lately become a subject of special interests in the field of printed electronics. Since this technology has the advantage that continuous and mass production is possible. And for high precision register control is required in multi-layer printing to produce the electronic devices, this is one of the most important technologies in roll-to-roll printing technology. Register error could be generated by various reasons like eccentricity of roll and thermal deformation due to temperature variation in drying section. In this study, the effect of tension variation on the register was analyzed. The results of these analyses show that it is essential to consider the tension disturbance which is generated by the change of temperature in drying section, and conventional register model has limitation to estimate the register error. In order to overcome the limitation of the register model, advanced register model based on the SI process was developed. Also, the performance of the developed model was verified experimentally.

Model of Drying Stress Distribution in Disks End-wrapped in Korean Paper and Effects of End-wrappings on Prevention of Drying Defects for Vacuum Drying of Disks (한지(韓紙) 엔드래핑처리 원판(圓板)의 감압건조응력(減壓乾燥應力) 분포모형(分布模型) 및 엔드래핑스의 건조결함(乾燥缺陷) 예방효과(豫防效果))

  • Lee, Nam-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-63
    • /
    • 1991
  • It was proved that in conventional kiln drying of disks piling position in the kiln exerted a great influence on drying rates, and the larger the variation of disk diameter, the more undulating drying rates of disks. While in vacuum drying disks there was no influence on drying rates. By the end-wrapping treatments and the radial direction of disks tangential surface stresses in the core of disks were slightly compressive in three species. In control disks the drying stresses distributed into one step-style that compressive stresses in the pith side of 6cm from pith were larger than those in the bark side, while in the disks end-wrapped with Korean paper the drying stresses distributed uniformly, because flow rates of free water in disks had no difference between heart-and sap-wood by obstruction of evaporating water from surface of disks by end-wrapping with Korean paper. And end-wrapping with Korean paper considerably restrained those. Tangential differential shrinkage stresses developed the maximum tensile stress near the bark and with approaching the pith the stresses gradually reduced and changed into compressive stresses in near the pith. At the end of vacuum drying the maximum tangential tensile stresses of disks end-wrapped with Korean paper were smaller than those of control disks, and critical moisture contents causing the V-shaped crack of disks end-wrapped with Korean paper were lower than those of control disks because of the set by obstruction of evaporating water of end-wrapping with Korean paper. In the experiment of vacuum drying stress distribution the disks end-wrapped with Korean paper or aluminum foil in three species were free from V-shaped cracks and control disks were defected very slightly by V-shaped cracks. And also disks end-wrapped with Korean paper were free from heart checks in Alnus japonica and Juglans sinensis, and heart checks were occurred very slightly in others. Especially, not to speak of disks end-wrapped with Korean paper, vacuum drying of disks end-wrapped with aluminum foil prevented effectively drying defects, moreover drying times could be shortened, that is. Ginkgo biloba, Alnus japonica, and Juglans sinensis disks could be dried from green to in-use moisture content in 110 hours, 272 hours, and 407 hours, respectively.

  • PDF

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF