• Title/Summary/Keyword: Drying Model

Search Result 414, Processing Time 0.032 seconds

Effect of Combined Osmotic Dehydration and Hot-air Drying on the Quality of Dried Apple Products (삼투건조와 열풍건조의 조합이 사과 건조제품의 품질에 미치는 영향)

  • Choi, Hee-Don;Lee, Hae-Chang;Kim, Yun-Sook;Choi, In-Wook;Park, Yong-Kon;Seog, Ho-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • This study was conducted to investigate the effects of combined osmotic dehydration and hot-air drying on the quality of dried apple products. Apple cylinders were steeped in 30% and 50% sucrose solutions at different steeping times. During the osmotic dehydration, as the concentration of the sucrose solution and steeping time increased, weight reduction and water loss increased, and the solid gain showed similar results. Osmotic dehydration in the sucrose solutions was followed by hot-air drying at 50 and $70^{\circ}C$. The experimental data were fitted successfully using the modified Page model. At the drying temperature of $50^{\circ}C$, the drying time increased from 4.15 hr for the control to 5.78 hr and 6.42 hr for the 30 and 50% sucrose solution treatments, respectively. Similar results were shown at the $70^{\circ}C$ drying temperature. The k and n values of the apple cylinders decreased by osmotic dehydration, and the k and n of the apple cylinders steeped in the 50% sucrose solution were lower than those of the samples steeped in the 30% sucrose solution. The qualities of the dried apple products were compared to samples that did not undergo osmotic dehydration. The shrinkage and rehydration capacity of the apple products decreased via osmotic dehydration, and decreased as the concentration of the sucrose solution increased. The compressibility ratios of the apple products to raw apple cylinders increased by osmotic dehydration, and increased as the concentration of sucrose solution increased. The sensory evaluation results for the apple products rehydrated in yoghurt indicate that osmotic dehydration greatly enhances the palatability of apple products in terms of appearance, taste, and texture.

Mathematical Relationship between Ice Dendrite Size and Freezing Conditions in Tuna

  • Choi, Mi-Jung;Hong, Geun-Pyo;In, Dae-Sik;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.330-335
    • /
    • 2009
  • The principal objective of this study was to investigate changes in ice dendrite size during the freezing of tuna, in order to formulate a mathematical model of ice dendrite size. The tuna was frozen via a uni-directional heat transfer. Thermogram analysis allowed us to determine the position of the freezing front versus time, which is referred to as the freezing front rate. The morphology of the ice dendrites was assessed via scanning electron microscopy after freeze-drying, and the retained pore size was measured as ice dendrites. We noted that the mean size of ice dendrites increased with the distance to the cooling plate; however, it decreased with reductions in the cooling rate and the cooling temperature. In addition, shorter durations of the freeze-drying process decreased the freezing front rate, resulting in a larger size of the ice dendrite pores that operate as water vapor sublimation channels. According to our results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of the freezing front rate.

Effects of the Preheating Treatments of Raw Ginseng in the Model System on the Synthesis of the Maillard Type-Browning Reaction Products of Red Ginseng

  • Suzuki, Yukio;Choi, Kang-Ju;Uchida, Kei;Ko, Sung-Ryong
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.136-142
    • /
    • 2004
  • During our investigations on the relationship between the browning reaction of ginseng root and two compounds (arginyl-fructosyl-glucose and arginyl-fructose) in the model system of steaming and heat-drying processes for the preparation of red ginseng, the preheating treatment of main roots of raw ginseng at 60∼70$^{\circ}C$ prior to the steaming and heat-drying processes was found to bring about the gelatinization of starch granules. The enzymatic hydrolysis of gelatinized starch to maltose, a marked formation of maltose, and the increase of both free arginine and total amino acids, resulting the acceleration of the Maillard type-browning reaction of ginseng root during the steaming and heat-drying processes, and the rise of brown color intensity of red ginseng. These results show that the preheating treatment may be effective for the decrease of inside white of red ginseng.

Effects of Air-flow Rate on Bio-drying of Food waste (송풍량이 음식물쓰레기 발효건조에 미치는 영향)

  • Yoo, Jung-Suk;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2018
  • This study was carried out for 20 days in a bio-drying batch reactor under the blowing conditions of 0.75, 1.00, 1.25, and $1.50L/min{\cdot}kg$ in order to optimize the operating conditions for the bio-drying of food wastes. The decomposition rate of organic matter during the bio-drying operation period was analyzed using modified Gompertz model. The maximum organic degradation (P) was 2.31, 2.52, 2.27 and 1.88 kg at air flow rates of 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, and the maximum organic degradation rate was 0.33, 0.45, 0.28, and 0.18 kg/day at 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively, showing excellent organic decomposition efficiency at a air flow rate of $1.00L/min{\cdot}kg$. The lag growth phase time (${\lambda}$) of the bio-drying reactor was 2.10, 1.48, 1.15, and 1.06 days at 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively. The water removal rate in the operation of bio-drying reactor of food waste increased with the increase of air flow rate from the early stage of bio-drying to the middle stage, and the highest water removal rate was observed at the air flow rate of $1.00L/min{\cdot}kg$ at the end of bio-drying. The optimum air flow rate condition of bio-drying reactor was $1.00L/min{\cdot}kg$.

Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result (CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안)

  • Kim Jae Ki;Seo Jong-Myeong;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

Generalized predictive control with exponential weight to control tempera-tures in ceramic drying furnace (세라믹 건조로 온도 제어를 위한 가중계수를 갖는 일반형 예측제어)

  • 임태규;성원준;금영탁;송창섭
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.284-289
    • /
    • 2003
  • The electric furnace, inside which the desired temperature is kept by the generated heat, is known to be a difficult system to control and model exactly because system parameters and response delayed time are varied as the temperature and positions are changed. In this study, the GPCEW (generalized predictive control with exponential weight), which always guarantees the stability of the closed loop system and can be effectively applied to the internally unstable system, was introduced to the ceramic drying electric furnace and was verified by showing its temperature tracking performance experimentally.

Development of a Grain Drying and Storage System for Bulk Facilities of Grain Custody Warehouse -Square Silo System- (곡물보관창고의 산물시설화를 위한 곡물 건조저장시설의 개발 -사각 사일로 시스템-)

  • 정종훈;유수남
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.151-161
    • /
    • 1995
  • A basic proposal on the design of a grain drying and storage system was suggested for the bulk facilities of grain custody warehouses. A model square silo system was designed and developed on the basis of the proposal. A square silo system made of steel plate was developed with a stirring device, an automatic moisture meter and an auto-control system of PLC. Then, the developed square silo system was evaluated through drying experiments with rough rice. The square silo system could dry grains uniformly with a stirring device and an auto-control system regardless of grain depth. The developed square silo system can be well adapted for the bulk facilities of grain custody warehouses.

  • PDF

The Characteristics of Ultrasonic Wave Transmitted Through Drying Wood

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • The possibility of using the properties of an ultrasonic wave as a means for monitoring the moisture content of a board during drying was investigated. The ultrasonic wave signals are influenced by moisture content and other factors such as temperature, moisture gradient and coupling area. The effect of temperature was examined by measuring the transit times, amplitudes and velocities of ultrasonic waves transmitted through air, a metal bar and a board at various temperatures. The effect of a moisture gradient was studied using a model specimen composing five wood pieces of various moisture contents. The velocity and amplitude of the ultrasonic waves transmitted through air increase with temperature, while those through a metal bar and a board decrease. It was confirmed that the temperature effect is partially attributed to the change of transducer's properties. The effect of a moisture gradient on the velocity of an ultrasonic wave varies with the average moisture content of a board. As the dimension of the end face of a board increases the velocity of an ultrasonic wave increases and low frequency components more dominates than high frequency components. The transit times of ultrasonic waves transmitted through a board during kiln drying reflect the temperature steps in the drying schedule and the transducer temperatures.

A NUMERICAL ANALYSIS OF CHARACTERISTICS OF DOMESTIC CLOTHES DRYERS (수치 해석을 이용한 가정 의류건조기의 성능 분석)

  • Kim, S.K.;Sohn, D.Y.;Choi, Y.H.;Kang, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.283-288
    • /
    • 2010
  • The characteristics of a condenser dryer and a vented dryer that are common types of domestic clothes dryers for home use are predicted and compared in an effort to improve the efficiency and to overcome economical and environmental problems due to its inefficient power consumption. In the present study, a drying system is simplified by assuming the mechanism is composed of several elements such as heater and drum and mathematical models using the mass and energy conservation of moisture and air through each element are defined. Based on this mathematical model, the computational tool is developed to predict temperature, humidity and enthalpy of moisture and air in a drum and remained moisture contents (RMC) in drying materials. The computational results are verified by comparing with experimental results from existing studies. In addition, the efficiency of a dryer is calculated using these predicted results for a given condition and the drying characteristics of a condenser dryer and a vented dryer are compared and analyzed.

  • PDF

Optimization of Drying Conditions for Quality Semi-dried Mulberry Fruit (Morus alba L.) using Response Surface Methodology

  • Teng, Hui;Lee, WonYoung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Mulberry fruits were semi-dried using hot air ($60-100^{\circ}C$) or cool air ($20-40^{\circ}C$), and the effects of the drying temperature and processing time on the quality of the final dried mulberry fruits were investigated. Response surface methodology was employed to establish a statistical model and predict the conditions resulting in minimal loss of the total phenolic content (TPC) and ascorbic acid. Thus, using overlapped contour plots, the optimal conditions for producing semi-dried mulberry fruits, which reduced the moisture residue to 45% and minimized the nutrient losses of TPC and ascorbic acid, were determined for the hot-air process ($60.7^{\circ}C$ for 5.4 h) and cool-air process ($34.8^{\circ}C$ for 23.3 h). Plus, a higher drying temperature was found to lead to a faster loss of moisture and ascorbic acid, while the TPC was significantly decreased in the cool-air dried mulberry fruits due to the higher activity of polyphenol oxidase between 30 and $40^{\circ}C$.