• Title/Summary/Keyword: Drying

Search Result 5,190, Processing Time 0.028 seconds

Effects of Drying Temperature on Internal Temperature, Drying Rate and Drying Defects for Japanese Larch in High-Temperature Drying (일본잎갈나무 정각재(正角材)의 고온건조(高溫乾燥) 온도(溫度)가 내부온도(內部溫度), 건조속도(乾燥速度) 및 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Lee, June-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.99-107
    • /
    • 1997
  • This study was executed to test the possibility of replacement for domestic Japanese larch(Larix leptolepis) for hardwoods and to acquire the information about the effects of drying temperature on internal temperature, moisture content and drying defects. In high-temperature drying, internal temperature increased rapidly to boiling point, immediately after that point the internal temperature rising rate was reduced. In the case of drying at temperature of $125^{\circ}C$, internal temperature could reach at boiling point in a very short time. Moisture content in high-temperature drying showed constant drying rate period and first period of falling rate drying together in 4 hours since experiment begun. There was no strong correlation between initial moisture content and final moisture content. Average drying rate at $115^{\circ}C$, $120^{\circ}C$ and $125^{\circ}C$ was 1.42%/hr, 1.88%/hr and 2.02%/hr, respectively; the case of drying temperature of $125^{\circ}C$ showed most rapid drying rate. Drying rate of $125^{\circ}C$ was so rapid that it showed more severe shrinkage, bow, collapse, end check, and internal check development than in other drying conditions. The result of this study showed the strong possibility of high-temperature drying for Japanese larch, and to dry Japanese larch optimally, dry bulb temperature should not exceed $120^{\circ}C$.

  • PDF

Effects of Drying Methods Based on Exhaust Cycle and Time on the Quality and Drying of Red Peppers

  • Nam, Sang Heon;Ha, Yu Shin;Kim, Tae Wook
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • Purpose: The purpose of this study is to develop a system to optimize drying potential energy of the exhausted hot air by changing relative humidity of the air. This study modified the conventional drying method into a drying method changing exhaust cycle and time in order to control the relative humidity of the exhausted hot air during drying process. Method: A valve on the vent was controlled according to a preset time to change the exhaust cycle and time. This study analyzed the influence of the two different types of drying method on the drying characteristics, required energy, and quality of the dried peppers: conventional drying method exhausting hot air continuously and new drying method controlling exhaust cycle and time. Results: Drying characteristics based on exhaust time showed that drying time increased with exhaust time, and specific energy consumption was reduced by 28% from 18.39 MJ/kg (conventional method) to 13.24 MJ/kg when exhaust time was set to one minute. Drying characteristics based on heating time showed that drying time increased with heating time and specific energy consumption was reduced by 30% from 18.39 MJ/kg (conventional method) to 12.87 MJ/kg when exhaust time was set to 22 minutes. Drying characteristics based on exhaust cycle showed that drying time increased with exhaust cycle, and specific energy consumption was reduced by 31% from 18.39 MJ/kg (conventional method) to 12.69 MJ/kg when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. The quality of the dried red peppers showed that capsaicin, color, and sugar content were high as 34.87 mg/100g, 66.33, and 11.87%, respectively, when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. Conclusions: In order to utilize the drying potential energy of the exhausted air during drying process, the conventional drying method was modified into the drying method controlling exhaust cycle and time. The results showed that drying with exhaust cycle of one minute was more efficient in terms of drying time, required energy, and quality of the dried peppers than the one with exhaust cycle of 20~40 minutes.

Study on Seombody Drying (섬바디의 건조에 관한 연구)

  • Park, Kyung-Kyu;Chung, Chang-Joo
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-55
    • /
    • 1976
  • An experimental work was conducted to develop an optimum operating system of various hay drying systems ; sun-drying with long hay, sun-drying after chopping, sun-drying after crushing, heated air drying after chopping using batch-type dryer and heated air drying after crushing using tunnel-type dryer. Seombody having 60 cm long and initial moisture content of approximately 79 % in wet basis was used for the experiment. The criteria selected for determining the optimum operating condition were the drying performance rate, the production cost and quality of dried matter of each drying systems. The result of this study are summarized as follows : 1. Drying characteristics of leaves of long stem hay, chopped seombody and crushed one were obtained by maintaining the oven temperature at 70 degrees centigrade. The required drying times for various samples to approximately 15% moisture content in wet basis were about 50 min .for leaves ; 160 min. for crushed hay ; 250 min. for chopped hay ; 340min. for ling hay and more than 360 min .for stems. The drying time of crushed hay was required about 50 % of that for the uncrushed long hay. Such a significant difference of drying of time between the leaf and long stem may indicate that an effective drying of seombody may not be achieved unless any kind of special process treatment for the whole hay is undertaken. 2. In each individual drying system, the following conclusions were drawn: a. After 8 days sun-drying on concrete floor under good days with average tempe?rature at $256{\circ}C$ and relative humidity at 55% at 2 P.M., the moisture content of long hay was still above 25 5'~ and the leaf loss during drying caused by wind and rough handling was more than 50 ~G. b. It was possible to dry the chopped seombody by sun-drying down to about 10 % moisture content within 5 days, however, a stock of heat and discolouration phenomena were observed during the drying, which may be due to the increased deposit-density by chopping, resulting in lowering the quality of the dried product. c. Sun-drying for the crushed material by hay-conditioner was required about 4 days to reduce the moisture content to about 10 %, keeping the quality of dried product at good grade. o. The optimum deposit-depth of the chopped seombody in the batch-type dryer used was about 28cm with about 42kg/hr of drying performance rate. However, it was necessary to overturn the materials between the upper and lower layers in order to obtain a good quality of dried product. d. The drying performance rate by the tunnel-type drier was highest among those of drying systems tested, giving the rate of approximately 400kg/day. 3. On reviewing the individual drying system for seombody, it was possible to draw conclusion that the best system was tunnel drying with the crushed seombody as far as the performance rate was concerned. However, the methods gives the highest operational cost. The system for the lowest operational cost with good quality of dried product was the sun-drying with the crushed material. Accordingly, it may be recommended that the system of sun-drying for the crushed seombody may be the most feasible system presently applicable to farm-level operation.

Study on Seombody Drying (섬바디의 건조에 관한 연구)

  • 박경규
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1976
  • An experimental work was conducted to develop an optimum operating system of various hay drying systems ; sun-drying with long hay, sun-drying after chopping, sun-drying after crushing, heated air drying after chopping using batch-type dryer and heated air drying after crushing using tunnel-type dryer. Seombody having 60 cm long and initial moisture content of approximately 79 % in wet basis was used for the experiment. The criteria selected for determining the optimum operating condition were the drying performance rate, the production cost and quality of dried matter of each drying systems. The result of this study are summarized as follows : 1. Drying characteristics of leaves of long stem hay, chopped seombody and crushed one were obtained by maintaining the oven temperature at 70 degrees centigrade. The required drying times for various samples to approximately 15% moisture content in wet basis were about 50 min .for leaves ; 160 min. for crushed hay ; 250 min. for chopped hay ; 340min. for ling hay and more than 360 min .for stems. The drying time of crushed hay was required about 50 % of that for the uncrushed long hay. Such a significant difference of drying of time between the leaf and long stem may indicate that an effective drying of seombody may not be achieved unless any kind of special process treatment for the whole hay is undertaken. 2. In each individual drying system, the following conclusions were drawn: a. After 8 days sun-drying on concrete floor under good days with average tempe\ulcornerrature at $256{\circ}C$ and relative humidity at 55% at 2 P.M., the moisture content of long hay was still above 25 5'~ and the leaf loss during drying caused by wind and rough handling was more than 50 ~G. b. It was possible to dry the chopped seombody by sun-drying down to about 10 % moisture content within 5 days, however, a stock of heat and discolouration phenomena were observed during the drying, which may be due to the increased deposit-density by chopping, resulting in lowering the quality of the dried product. c. Sun-drying for the crushed material by hay-conditioner was required about 4 days to reduce the moisture content to about 10 %, keeping the quality of dried product at good grade. o. The optimum deposit-depth of the chopped seombody in the batch-type dryer used was about 28cm with about 42kg/hr of drying performance rate. However, it was necessary to overturn the materials between the upper and lower layers in order to obtain a good quality of dried product. d. The drying performance rate by the tunnel-type drier was highest among those of drying systems tested, giving the rate of approximately 400kg/day. 3. On reviewing the individual drying system for seombody, it was possible to draw conclusion that the best system was tunnel drying with the crushed seombody as far as the performance rate was concerned. However, the methods gives the highest operational cost. The system for the lowest operational cost with good quality of dried product was the sun-drying with the crushed material. Accordingly, it may be recommended that the system of sun-drying for the crushed seombody may be the most feasible system presently applicable to farm-level operation.

  • PDF

Drying Characteristics of Oak Mushroom Using Stationary Far-infrared Dryer (정치식 원적외선 건조기를 이용한 표고버섯의 건조특성)

  • Kim, Chang-Fu;Li, He;Han, Chung-Su;Park, Jong-Soo;Lee, Hae-Cheol;Cho, Sung-Chan
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.6-12
    • /
    • 2007
  • This study was conducted to investigate the drying characteristics of oak mushroom using stationary far-infrared dryer. Drying characteristics was measured at drying air velocity 0.4 to 0.6 m/s and drying temperature 50, 60, and 70$^{\circ}C$, respectively. With high temperature of far-infrared heater and fast air velocity, the far-infrared drying rate of double air flow system was better than conventional heated-air drying as much as 39%. The value of color difference (E) of oak mushroom before and after drying was 8.95 by using heated air drying and was in the range of 3.76$\sim$6.98 by the far-infrared drying. The shrinkage rate of oak mushroom after heated air drying was higher than that of air velocity, 0.6 m/s of far-infrared drying conditions, and was lower than that of air velocity, 0.4 m/s of far-infrared drying conditions. The content of free amino acid was higher in far-infrared drying than heated air drying.

Drying Characteristics of Mushroom (버섯의 건조특성(乾燥特性)에 관한 연구)

  • Shong, S.K.;Koh, H.K.;Lee, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.112-123
    • /
    • 1994
  • At present, no appropriate drying conditions can be found for the heated-air drying of mushroom in Korea. Usually, mushroom is being dried at the temperature range of 40 to $50^{\circ}C$ until the moisture content reaches 10~13% (wb). However, drying characteristics of the mushroom should be investigated for quality improvement and efficient drying operation of the mushroom. The results of this study may be summarized as follows ; 1. The effect of air temperature on the rate of drying was greater than that of relative humidity for drying of mushroom, and the rate of drying was increased with increase in the air temperature. 2. Drying rate for Shiitake mushroom showed falling-rate period of drying without constant-rate period of drying. Drying rate for Oyster mushroom showed a short constant-rate period at the initial stage of drying process, and followed by falling-rate period of drying. 3. Exponential and App.-Diffusion models were found to describe well the drying process of Shiitake mushroom. Exponential and Thompson models for Oyster mushroom in which Thompson model was the most suitable for Oyster mushroom. 4. The equilibrium moisture content of the mushroom decreased with decrease in the air temperature and increase in the relative humidity. In room condition($20^{\circ}C$, 54% RH), the calculated values of the equilibrium moisture content showed 11.17% for Shiitake mushroom and 13.19% for Oyster mushroom, respectively.

  • PDF

Physicochemical Properties of Soybean Curd Residue Powder by Different Soybean and Drying Methods (콩의 종류와 건조 방법에 따른 비지 분말의 이화학적 특성)

  • Eun Ji Kim;Hee Nam Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.356-364
    • /
    • 2023
  • This study compared the physicochemical properties of soybean curd residue and black soybean curd residue produced by hot air-drying and freeze-drying. Regardless of drying method, the crude protein, crude ash, crude fiber contents, pH, L, a, b color values and water soluble index were higher in soybean curd residue, whereas total polyphenol contents and antioxidant activity were higher in black soybean curd residue. Significant differences in water absorption index, oil absorption capacity and emulsion activity were observed between soybean curd residue and black soybean curd residue in freeze-drying. On the other hand, the emulsion stability was not significant difference in both hot-air drying and freeze-drying. The crude protein and crude fiber contents of soybean curd residue were not significant difference between hot-air drying and freeze-drying. Freeze-drying resulted in higher crude ash contents, pH, water absorption index, water soluble index, oil absorption capacity, emulsion activity and emulsion stability than hot-air drying. Hot-air drying have caused significantly higher water contents, water activity, total polyphenol contents and antioxidant activity in soybean curd residue than freeze-drying. In conclusion, soybean type and drying methods affect the physicochemical and quality characteristics of soybean curd residue, which could be important factors in the manufacture of processed foods.

Drying Characteristics of Squids According to Far Infrared and Heated Air Drying Conditions (원적외선과 열풍 건조조건에 따른 오징어의 건조특성)

  • Kang, Tae-Hwann;Hong, Hyun-Gi;Jeon, Hong-Young;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • Drying characteristics of squids under two dry conditions were investigated using far infrared and heated air. Dry temperatures of 40, 50 and $60^{\circ}C$ with air speed of 0.6, 0.8 and 1.2 m/s were used for evaluating far infrared squid drying. Heated air squid drying at 40 and $50^{\circ}C$ with air speed of 0.8 m/s was used as a control treatment. The two drying were evaluated in terms of drying rate, color, TBA value, aerobic bacteria, cutting shear, penetration strength, and energy consumption. The drying rate of far infrared drying was relatively faster than that of heated air drying. The drying time of far infrared drying was reduced as the drying temperature increased. The color difference of far infrared dried squids was from 18.81 to 22.85, and heated air dried squid had the color different from 23.94 to 24.09. Far infrared dried squid had relatively smaller TBA values that indicate a level of rancidity. The aerobic bacteria of heated air dried squid increased from $970{\times}10^3$ to $40,000{\times}10^3$ CFU/g before and after drying, respectively. Far infrared dried squid had relatively smaller increase (from $970{\times}10^3$ to $40,000{\times}10^3$ CFU/g). The cutting shear and penetration strength for far infrared dried squids was relatively lower. In addition, far infrared squid drying consumed relatively less energy compared to heated air drying.

Drying characteristics of lotus root under microwave and hot-air combination drying

  • Joe, Sung Yong;So, Jun Hwi;Lee, Seung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.519-532
    • /
    • 2020
  • Because lotus root has a short shelf life, the quality easily deteriorates. Thus, the harvested lotus roots are processed into a variety of products. Drying is one of the simplest food preservation methods, which can increase food stability. However, the convective drying method takes a long time and requires high energy consumption. Combination drying methods have emerged to overcome the limitations of the convective drying method. This study investigated the drying characteristics of lotus root and determined the optimal drying model of lotus root depending on the microwave and hot-air combination drying conditions. The lotus root slices (5 mm in thickness and 40 mm in diameter) were dried by different drying conditions that were combined with three microwave power levels (50, 100, and 150 W) and two hot air temperatures (50 and 60℃) at a velocity of 5 m·s-1. Eight drying models were tested to evaluate the fit to the experimental drying data, and the effective moisture diffusion (Deff) values of the lotus root slices dried by combination drying were estimated. The combination drying time of the lotus root was significantly reduced with the high air temperature and microwave power. The effective moisture diffusion (Deff) of lotus root was more affected by the air temperature than microwave power intensity. Logarithmic model was most suitable to describe the drying curve of lotus root in the microwave-hot air combination drying method.

A study on intelligent fish-drying process control system

  • Nakamura, Makoto;Shiragami, Teizoh;Sakai, Yoshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.132-137
    • /
    • 1993
  • In this paper, a fish drying process control system is proposed, which predicts the proper change with time in weight of the material fish and the drying conditions in advance, based on the performance of skilled worker. In order to implement a human expertise into an automated fish drying process control system, an experimental analysis is made and a model for the process is built. The proposed system divided into two procedures: The procedure before drying and the one during drying. The procedure before drying is for the prediction of necessary drying time. To estimate the necessary drying time, first, the proper change in weight for the product is obtained by using fuzzy reasoning. The condition part of the production rule consists of the factors of fish body and the expected degree of dryness. Kext, the necessary drying time is obtained by regression models. The variables employed in the models are the factors, inferred change in weight and drying conditions. The model for the procedure during drying is also proposed for more accurate estimation, which is described by a system of linear-differential equations.

  • PDF